

REPORT OF INVESTIGATIONS/1995

Investigation of Acid Production, Leaching, and Transport of Dissolved Metals at an Abandoned Sulfide Tailings Impoundment: Monitoring and Physical Properties

UNITED STATES DEPARTMENT OF THE INTERIOR

UNITED STATES BUREAU OF MINES

U.S. Department of the Interior Mission Statement

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

Cover: An abandoned sulfide tailings impoundment discharging acid drainage and dissolved heavy metals. **Report of Investigations 9577**

) 4

ì

i

Investigation of Acid Production, Leaching, and Transport of Dissolved Metals at an Abandoned Sulfide Tailings Impoundment: Monitoring and Physical Properties

By B. M. Stewart, B. C. Williams, and R. H. Lambeth

UNITED STATES DEPARTMENT OF THE INTERIOR Bruce Babbitt, Secretary

BUREAU OF MINES Rhea Lydia Graham, Director International Standard Serial Number ISSN 1066-5552

• •

And and a second

and the set of the set

4e

a set a s

CONTENTS

salah ing san a luna hura

and here

and the second sec

Abstract	1
Introduction	2
Site description and selection	2
Site criteria	2
Site description	3
Monitoring well drilling and installation	4
P wells in and below tailings	4
B wells in tailings	4
BKG and M wells upgradient and downgradient of tailings	5
Field sampling and data collection	6
Solid samples	6
Water samples from BAT samplers	6
Gas samples from BAT samplers	7
Water samples from PVC monitoring wells	7
Field data collection	7
Water properties	7
Tailings temperature	7
Head and pore pressure	7
In situ moisture and density	8
Hydraulic conductivity	8
Groundwater flow direction and velocity	8
Laboratory data collection	9
Water analysis	9
Pore gas analysis	9
Mineral, chemical, and physical properties	9
Iron and arsenic speciation	9
	10
	10
	10
\mathbf{D}	10
70	11
	11
Grain-size distribution	11
	11
	12
	13
	14
	14
	14
	15
	16
	16
	17
	19
	19
	19
	19
	19
	20
	20 20
XX7 · 1/· 1 1 · 1/!	20 20
	20 21

Page

CONTENTS—Continued

Conclusions	22
Acknowledgments	23
References	23
Appendix AWater completion reports for P, M, and BKG wells	
Appendix B.—Water quality data from sampling trips between 1988 and 1991	
Appendix CSummary of SEM analysis of samples taken at base of and below tailings	78
Appendix DResults of chemical analyses of solid samples collected at base of and below tailings	80

ILLUSTRATIONS

		05
1,	Low-angle photograph of study site looking downgradient	25
2.	Cross section of tailings impoundment and stratigraphy below impoundment	26
3.	Plan view of research site and monitoring well locations	27
4.	Cross section of BAT sampler	28
5.	Gauge pressure data from vadose zone	29
6.	Head data from saturated zone sampling locations plotted against time	29
7.	Oxygen and carbon dioxide content at vadose zone sampling locations plotted against time	30
8.	Grain-size distribution of samples from vadose zone and saturated zone, well P3A	30
9.	Moisture and density profiles in vadose zone, well B2-4c	31
10.	Grain-size distribution in samples above and below hardpan	31
11.	Moisture and density profiles in tailings and silts below tailings near well P3	31
12.	Changes in elevation, pH, Eh, and metal concentrations in shallow groundwater	32

TABLES

1.	Description of wells	4
2.	Monitoring wells in and below tailings	5
3.	Background and downgradient monitoring wells	6
4.	Average concentrations of oxygen and carbon dioxide as a function of depth in vadose zone pore spaces	10
5.	Average moisture content in various zones in and below tailings	12
6.	Average constituent concentrations in well clusters B1 and B2	13
7.	Vertical component of hydraulic gradient and flow direction for background and downgradient multiple-	
	completion wells	14
8.	Arithmetic means of analysis and chemical characteristics of tailings pore water from vadose zone	16
9.	Arithmetic means of analysis and chemical characteristics of tailings pore water from saturated zone	17
	Arithmetic means of analysis and chemical characteristics of downgradient and background water	18
11.	Average constituent concentrations below tailings	21

1

- South States

10.2

Page

UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT

centimeter	mL/min	milliliter per minute
centimeter per second	mm	millimeter
gram per cubic centimeter	mV	millivolt
hour	pct	percent
hectare	ppb	part per billion
kilogram	ppm	part per million
meter	S	second
cubic meter	vol pct	volume percent
meter per day	μL	microliter
milligram per liter	μ m	micrometer
meter per meter	µS/cm	microsiemens per centimeter
minute	°C	degree Celsius
milliliter		
	centimeter per second gram per cubic centimeter hour hectare kilogram meter cubic meter meter per day milligram per liter meter per meter minute	centimeter per secondmmgram per cubic centimetermVhourpcthourppbhectareppbkilogramppmmeterscubic metervol pctmeter per dayµLmilligram per literµmmeter per meterpS/cmminute°C

Reference to specific products does not imply endorsement by the U.S. Bureau of Mines.

INVESTIGATION OF ACID PRODUCTION, LEACHING, AND TRANSPORT OF DISSOLVED METALS AT AN ABANDONED SULFIDE TAILINGS IMPOUNDMENT: MONITORING AND PHYSICAL PROPERTIES

By B. M. Stewart,¹ B. C. Williams,² and R. H. Lambeth¹

ABSTRACT

Researchers at the U.S. Bureau of Mines conducted a long-term groundwater monitoring and site characterization program at an abandoned 10-ha, acid-producing, copper-gold tailings impoundment in north-central Washington State. The purpose was to investigate contaminant release and transport, and attenuation mechanisms in the tailings, sediments below the tailings, and gravels downgradient of the impoundment. This report summarizes the monitoring results and physical properties of the tailings, the sediments below the tailings, and the groundwater system associated with the tailings.

Water samples from the vadose and saturated zones of the impoundment were analyzed for 15 constituents. Concentrations of the same constituents were determined in water samples up to 3 m beneath the impoundment and in the shallow colluvium and deep bedrock at 76, 335, and 550 m downgradient and 168 m upgradient.

Constituent concentrations within the tailings are quite variable and are influenced by pH, depth of oxidation, grain-size differential (surface area), hydraulic gradient, groundwater mixing, and the presence of hardpan layers, carbonaceous material, and organic matter. Most of the metal constituents decreased to background or near-background concentrations in the farthest downgradient well.

¹Mining engineer,

²Research civil engineer.

Spokane Research Center, U.S. Bureau of Mines, Spokane, WA.

Cleanup of inactive mining-related sites and protection of the environment during current mining is a significant issue in the United States. The control of water pollution from mining and milling wastes is addressed under the Clean Water Act, which regulates the discharge of pollutants into surface waters; the Resource Conservation and Recovery Act (RCRA), which classifies the hazard potential of wastes; and the Comprehensive Environmental Response Compensation and Liabilities Act (CERCLA), which was written to guarantee the cleanup of sites not covered by other laws.

It has now been recognized that many inactive or abandoned mine sites are sources of contaminated water. Some of these mines have been placed on the National Priorities List under CERCLA and the Superfund Amendment and Reauthorization Act.

In 1988, the U.S. Environmental Protection Agency (EPA) significantly revised guidance documents and activities and prepared a National Contingency Plan that encourages and supports the use of innovative treatment technologies at Superfund sites. One provision of the plan includes selecting permanent, long-term remedies, with the highest priority for treatment to be given to "liquids, other highly mobile materials, and highly concentrated toxic compounds" (EPA, 1988).

There are currently very few, if any, cost-effective technologies to clean up surface and/or ground waters that have been contaminated by mining and milling wastes at inactive sites. Because of the complexity of the chemical and physical factors that contribute to water contamination from mining wastes, researchers at the U.S. Bureau of Mines (USBM) are conducting long-term studies on the generation, mobilization, and fate of heavy metals and other contaminants in these wastes. The results will be used to aid in the development of remediation strategies and to identify additional data needed for remediation.

The generation of acid and subsequent metal dissolution in tailings impoundments is a complex biogeochemical process involving the oxidation of pyrite and other sulfides and includes several inorganic reactions that depend upon

such factors as pH, oxidation-reduction potential (Eh), oxygen availability, and the availability of other oxidants, such as ferric iron (Fe³⁺). Although oxygen initiates sulfide oxidation, at low pH levels, the important ratedetermining step(s) may involve other oxidants, such as ferric iron instead of oxygen (Nordstrom, 1982). Sulfide oxidation may also be directly or indirectly catalyzed by the presence of bacteria of the Thiobacillus genus and by other species of sulfur- and/or iron-oxidizing bacteria. Sulfides that are oxidized by oxygen and other oxidants are the source of sulfates and H^+ (acid) in solution. The acid dissolves and is neutralized by carbonates, aluminosilicates, and existing oxides, and by secondary aluminum hydroxides (Dubrovsky and others, 1985). Sulfates and hydroxide minerals form as precipitates when they reach geochemical saturation, depending upon the reaction kinetics. These reactions may occur near the sulfide source as well as downgradient from the point of sulfide oxidation. The degree of moisture saturation can influence the primary oxidation mechanism. A study by Taylor and others (1984) indicates that oxidation of sulfides in anaerobic, water-saturated environments occurs primarily by chemical oxidation pathways, whereas oxidation of sulfides in wellaerated vadose zone environments occurs mainly by microbially mediated pathways.

This Report of Investigations (RI) describes a research conducted at a specific mine waste site. It includes site characterization and results of analyses of water quality data collected in the vadose zone, the saturated zone, the sediments below the waste, the shallow unconsolidated aquifer, and deep zones of weathered bedrock at various distances downgradient from the waste. The primary objectives of this investigation were (1) to determine the physical property characteristics of the tailings and associated formations that affect acid production, leaching, and transport of dissolved metals from the waste and (2) to report existing water quality and other site-specific geological, physical, and hydrologic data that may be used for future site remediation work.

SITE DESCRIPTION AND SELECTION

SITE CRITERIA

The research objectives led to selection criteria for a tailings impoundment. Ease of access to the impoundment and adjacent watersheds were primary considerations. The following were also important:

1. A phreatic surface within the tailings profile, preferably in hydraulic connection with a shallow aquifer. This criterion permits the vadose zone to be compared with the saturated zone. If the tailings were not separated from the underlying material with a liner, the direct contact would permit analysis of free drainage, as well as upwelling, depending upon hydraulic conditions.

2. A vadose zone no less than 2 m thick to ensure that there was an adequate thickness to identify changes in characteristics such as oxygen content.

3. A significant amount of sulfides and few carbonates, to ensure that the tailings were acid producing. Such a condition is representative of most sulfide mine wastes.

4. Tailings and water slurry yielding acidic pH values, which would also support the belief that the tailings were acid producing.

5. An impoundment where there had been relatively little disturbance since the original deposition of the tailings. Postdepositional reworking of tailings might destroy or confound earlier distributions of certain physical or chemical properties with respect to depth. Because the kinetics of some oxidation reactions are slow, physical and chemical characterizations should most closely approximate "equilibrium" (given age, location, and climate) if the tailings were undisturbed.

SITE DESCRIPTION

After visits to many different sites, the site chosen for this research was an abandoned gold and copper tailings impoundment on the eastern slope of the Cascade Mountains in Washington State. The site receives an average of 370 mm of precipitation per year. Temperatures range from -36 to 41 °C, and the annual average is 7 °C. Figure 1 is a low-angle photograph of the research site looking down the valley to the southeast. The impoundment measures approximately 200 by 46 m, with an average depth of 6.1 m and a surface elevation of about 567 m above sea level. It contains about 33,100 m³ of material. The phreatic surface, which varies spatially and temporally, is approximately 3 to 5 m below the ground surface. A cross section of the impoundment is shown in figure 2.

The valley in which the impoundment is located is a surface expression of a northwest-trending, near-vertical, tension-gash fault in midacidic metavolcanic bedrock. The valley floor is covered with a veneer of remnant gravel, and numerous calcareous and carbonaceous lake beds, some now dry, dot the floor. The tailings were deposited on top of one of these lake beds and next to a small pond. The upper meter of the silty lake sediments below the tailings is particularly rich in organic material, but the lateral extent of these sediments is not known. The geology of the valley in which the tailings impoundment was constructed is discussed in more detail by Lambeth (1992).

Mill records indicate that copper and zinc minerals were recovered by a conventional dual-circuit flotation system maintained at pH 10 or higher by the addition of lime. The mill was operating and depositing tailings into the impoundment between 1939 and 1953. The mined ore body, which is several miles away, is a chalcopyritesphalerite deposit containing gold and may be volcanogenic or (contact) metamorphic in origin. Mineralogical optical analysis of tailings from the chosen site indicated that tailings composition is 95 pct gangue minerals (primarily quartz and plagioclase) and 5 pct sulfide minerals (e.g., pyrite, chalcopyrite, sphalerite, and trace amounts of galena). No carbonates from the tailings were observed. Slurries composed of surface tailings mixed with deionized water yielded pH values in the range of 4 to 5. With the exception of one 2-m-deep pit (presumably dug in recent years to determine whether it would be economical to remill the tailings), these tailings have remained undisturbed since they were deposited.

The gravel aquifer under the tailings is recharged from bedrock sources and local precipitation. The flow direction is from the topographic high at the northwest end of the site toward the topographic low at the southeast end. On the basis of upward vertical gradients between the fractured bedrock and gravel aquifer at the locations of wells BKG, M2, and M5 (figure 3), the base flow in the gravel appears to be locally augmented at certain times of the year by upward groundwater discharge from the fractured bedrock. This groundwater probably discharges into the gravel and flows under, around, and possibly into the tailings and the underlying silt. However, at well M4 and in the fall at well M2, the vertical gradient is downward, indicating possible leakage from gravel to bedrock. Precipitation infiltrates the tailings impoundment and may possibly flow through the underlying deposits of calcareous and carbonaceous silt and enters the gravel aquifer. As contaminated tailings pore water leaves the tailings, a series of processes occur that influence contaminant concentrations downgradient. These include hydrogeochemical changes, dilution, dispersion, and advection.

There may be some tendency for infiltrating water to move horizontally when it encounters abrupt zones of relatively lower hydraulic conductivity. This horizontal flow may occur along layered heterogeneities in the tailings, such as hardpan, and also at the contact between the tailings and underlying organic matter and silts. If substantial horizontal flow does occur at the base of the tailings, pore water may eventually enter the colluvium at the edges of the impoundment, where the lake sediments stop. These sediments may actually have been removed in the vicinity of the downgradient end of the impoundment when the dam was constructed; if so, downward drainage into the colluvium would be enhanced just upgradient of the dam. Evapotranspiration may account for some portion of the water lost from the tailings impoundment.

MONITORING WELL DRILLING AND INSTALLATION

Forty-five polyvinyl chloride (PVC) and BAT Envitech, Inc., groundwater samplers for monitoring wells were installed at the field test site and are described in table 1. A plan view of the research site and the monitoring well locations is shown in figure 3. The well completion reports are given in appendix A.

Table 1.—Description of wells

No. of Type wells		Description	Location		
11	PVC	P wells	Saturated zone of tail- ings, colluvium, and sediments below tailings.		
14	BAT	B wells	Vadose and saturated zone of tailings.		
3	PVC	BKG wells: multiple completions in one hole.	Upgradient colluvium and bedrock.		
17	PVC	M wells: multiple completions in five holes.	Downgradient collu- vium and bedrock.		

P WELLS IN AND BELOW TAILINGS

The P wells in and below the tailings were installed using the hollow-stem auger method. With this method, holes are drilled to the desired depth with augers having an outside diameter of 20.3 cm and an inside diameter of 8.573 cm. The PVC casing is lowered down the inside hollow portion of the augers and the augers are retrieved, leaving the casing in place.

The P wells themselves consist of schedule 40 PVC pipe with an inside diameter of 3.18 cm and 61-cm-long bottom sections perforated with 0.05-cm slots. As much as possible, all wells installed after 1987 in the saturated zone of the tailings or below the tailings were installed according to the Minimum Standards for Construction and Maintenance of Wells established by the Washington State Department of Ecology (WSDOE, 1988). Because of the granular nature of the tailings, filter packs were not used, and the saturated tailings were allowed to cave around and above the perforated section (natural completion). A bentonite plug was installed from the caved-in portion to about 130 cm below the surface. A 122-cm-long protective cover with a locking cap was placed over the PVC pipe and grouted in place. Once in place, the wells were allowed to stabilize for 1 week and then developed. Development consisted of surging and pumping until the water was relatively clear. After development, dedicated 0.95-cm tubing was installed in each well for sampling.

To determine contaminant concentrations below the tailings, wells P3A, P3B, and P3C (figure 3) were drilled to 6.4 m (about 30 cm below the tailings), 5.8 m (base of the tailings), and 7 m (about 90 cm below the tailings), respectively. The 61-cm perforated section of well P3A was placed at the interface between the tailings and the organic-rich layer at the top of the lake sediment, with the upper half of the perforated section in the tailings and the lower half in the organic-rich layer. The perforated section of well P3B was completed in the tailings base, and the perforated section of well P3C was completed in the silt below the organic-rich layer. Well P3 was completed at 9.1 m, approximately 3 m in the silt below the tailings and below the organic-rich layer and just above the underlying gravel.

The depths of the P wells are shown in table 2 and are measured from ground level to the bottom of the 61-cmlong perforated section. Also shown in table 2 are the completion media and the sampling method for each well. Well P7 (figure 3) never contained water and therefore is not considered in this RI.

B WELLS IN TAILINGS

Also shown in table 2 are the depths, completion media, and sampling method for the B wells. Installation of the BAT samplers was done according to Petsonk (1985). The BAT sampler was chosen as the water and pressure sampling apparatus for the vadose zone and some locations in the saturated zone. This instrument operates in a manner similar to a suction lysimeter or tensiometer. It consists of a tip with a cylindrical porous filter. The porous filter chamber is topped by a septum, and the unit is installed downhole at the end of an access tube. Water sampling vials or a pressure transducer are fitted with a hypodermic needle connection. When the sample housing or transducer is lowered downhole, a spring-loaded apparatus pierces the septum to establish hydraulic connection with the tailings material. A cross section of the BAT sampler is shown in figure 4.

The BAT sampler was used in this study because it prevents exposure to air during the lengthy sampling process. At one sampling location in the vadose zone, it took at least 12 h to yield a 40-mL sample. Exposure to air for 12 h would have risked the possibility that great changes could take place in iron chemistry.

To sample liquids in the vadose zone, BAT samplers with ceramic tips having a pore size of 1 to 2 μ m were installed. The small pore size of the ceramic permits liquid samples to be withdrawn from the vadose zone according to the principles of capillarity because the pore size is comparable to that of the fine-grained tailings. Prior to installation, the ceramic tips were boiled in deionized water to force all gas from the pore spaces. They were then transported to the site in a bucket of water so they would remain saturated. The ceramic tips were pushed (with a mobile drill rig) to the desired depth immediately after being removed from the bucket in order to establish good hydraulic contact with the fine-grained tailings. Subsequent water samples have not shown any large particles, which indicates that the installations were successful, that is, that none of the ceramic filters have cracked. After 1 week, considered sufficient time for hydraulic contact to develop between tip and tailings, multiple-tip volumes were drawn through the tips to flush out deionized water with tailings pore water. One disadvantage of the BAT samplers was that at 61 cm, the tips became desaturated a few months after installation, and water samples could not be obtained. Consequently, wells B1-2c and B2-2c were not used. Gas samples, however, were obtained from wells B1-2p and B2-2p.

Table 2.--Monitoring wells in and below tailings¹

Well ID ²	Depth, m	Completion media
P1	4.9	Organic/gravel (BT). ³
P2	5.7	Gravel (BT).
P2A	4.9	Saturated tailings.
P3	8.9	Saturated volcanic ash (BT).
P3A	6.5	Organic layer (BT).
P3B	5.9	Saturated tailings base.
P3C	7,1	Saturated ash/organic (BT).
P4	4.6	Saturated tailings.
P5	4.4	Fluctuation zone.4
P6	5.0	Saturated tailings.
B1-2	0.6	Vadose tailings.
B1-4	1.2	Vadose tailings.
B1-7	2.1	Capillary zone.
B1-16	4.9	Saturated tailings.
B2-2	0.6	Vadose tailings.
B2-4	1.2	Vadose tailings.
B2-8	2.4	Vadose tailings.
B2-16	4.9	Saturated tailings.

¹Wells P1 through P6 were sampled with a vacuum pump; wells B1-2 through B2-16 were sampled with the BAT sampler.

²The first part of the label is the sample location, and the second part following the hyphen is the sample depth in feet from ground level.

³BT indicates the completion media are at the base of the tailings or below the tailings.

⁴The fluctuation zone refers to that zone through or within which the water table fluctuates from its highest point to its lowest point in any given year.

Thermoplastic tips with larger pore sizes were installed to collect water samples from the saturated zone. A small pore size is not required if water is being sampled at positive pressure. The thermoplastic tips did not require saturation prior to installation because they were installed below the water table, and their large pore size permitted water to displace air freely when suction was applied.

BKG AND M WELLS UPGRADIENT AND DOWNGRADIENT OF TAILINGS

Monitoring wells were installed upgradient of the tailings to determine water quality before the water had been influenced by the tailings and downgradient of the tailings to determine water quality after the water had been influenced by the tailings. The five downgradient wells (M wells) were drilled on pads leveled by a bulldozer. The pads were constructed perpendicular to and across the downgradient surface drainage. All the M wells were multiple completions with PVC casing at two or three different depths in each well. The shallow M wells (M1 through M4) were drilled using the downhole airhammer method, and the deep M well (M5) and upgradient well (BKG) were drilled using the air rotary method. In both methods, temporary casing was installed through the gravels. Forced air was used to remove the cuttings.

After reaching the desired depth, the holes were flushed with air until the discharged water became relatively clear. Once this initial development was completed, the first monitoring well (schedule 40 PVC pipe with a 61-cm perforated section) was set, and a filter pack of 20/30silica sand was placed around and above the perforated section. Next, a bentonite plug was placed above the filter pack by slowing pouring bentonite chips in the annulus between the casing and the PVC pipe. This procedure was repeated for the second and third wells in the multiple completion. The temporary casing was pulled after the monitoring wells were set in place. After the drill was moved off the hole, a 1.2-m-long protective cover with a locking cap was placed over the wells and grouted in place with a gravel-cement mix. At the surface, the mix was sloped away from the protective cover.

Wells M1 and M2 were placed on one pad 15 m apart and 76 m downgradient of the tailings impoundment. Wells M3 and M4 were placed on a second pad 18 m apart and 335 m downgradient, and well M5 was placed on a third pad 550 m downgradient. The BKG well was located about 175 m upgradient of the tailings pile and about 30 m upgradient of the standing water pond (figure 3). The depths from ground level to the bottom of the PVC casing for each completion in the upgradient and downgradient wells are shown in table 3. Also shown in table 3 are the media (gravel or bedrock) in which the perforated section of the casing was located and the method of obtaining water samples. Well M3-5 never contained water and, therefore, was not used. 6

Well ID Depth, m **Completion media** Colluvial gravel. M1-2 2.1 Bedrock. M1-3 3.4 Bedrock. M1-8 8.5 M2-4 4.0 Colluvial gravel. M2-6 Bedrock. 6.1 Bedrock. M2-12 12.5 Colluvial gravel. M3-5 4.9 9.8 Bedrock. M3-10 Colluvial gravel. 5.2 M4-5 Bedrock, M4-7 7.3 M4-10 9.8 Bedrock. Colluvial gravel. 4.0 M5-4 Bedrock. M5-23 22.9 M5-53 53.4 Bedrock. Colluvial gravel. 6.4 BKG-6 Bedrock. BKG-20 20.1 Bedrock. BKG-43 43.3

Table 3.-Background and downgradient monitoring wells¹

¹All wells were sampled using the peristaltic method, except wells M5-53, BKG-20, and BKG-43, which were sampled with bladder pumps.

FIELD SAMPLING AND DATA COLLECTION

SOLID SAMPLES

During well construction in the tailings, disturbed samples were obtained using a split-barrel sampler. The sampler was driven with a 63.6-kg hammer and consisted of two standard 38-cm-long split tubes with 20-cm-long spacers at the top and the middle and a 9-cm-long shoe. It was possible to obtain a total of 116 cm (not counting the shoe space) of sample per drive. Continuous samples from the surface to the desired depth were collected from most holes. Below the water table, a rivet-type basket retainer was placed in the shoe of the sampler to aid in sample removal. Samples were obtained in 1987 and again in 1990 while installing additional monitoring wells (P3A, P3B, and P3C). The samples were used for detailed mineralogical analyses; determinations of grain size, specific gravity, clay content, and moisture content; sequential analyses of base-metal loading; and development of a detailed site cross section.

WATER SAMPLES FROM BAT SAMPLERS

Before the field sampling trips, BAT sampling vials were flushed and then evacuated with an inert gas (helium), thereby washing out all atmospheric gases, such as oxygen and carbon dioxide. The vacuum evacuation system was one designed and constructed by USBM staff. After several evacuation cycles were completed, the vials were removed from needle connections while in a vacuum, the magnitude of which was indicated by an in-line pressure valve. Any remaining molecules of gas in the vials were helium, so the sampling vessel was completely free of oxygen or carbon dioxide molecules. The system was designed with multiple ports so that six vials could be evacuated at once.

Collecting samples using the BAT system (figure 4A) yielded an independent airtight vial for each sample. One "purge volume" of liquid was always withdrawn prior to sampling and the contents discarded; this amount was a minimum of 10 mL, which constituted the "dead volume" inside the sampler, i.e., the volume that had resided in the vial since the previous sampling trip. Obtaining 40 mL of sample from the vadose zone using ceramic tips required 2 to 12 h. Thermoplastic tips, which have larger pores than the ceramic tips, yielded over 60 mL in 15 min from the saturated zone.

Liquid sampling vials were stored on ice for no more than 12 h before they were opened to analyze for Eh (using a platinum electrode) and pH (using a glass electrode). Electrical conductivity was not measured because none of the available probes could measure conductivities as high as those found in the pore waters. Bicarbonate titrations were not performed because all tailings pH values were already below the titration endpoint pH. Dissolved oxygen (DO) was not measured because the BAT sampling procedure exerts a strong negative pressure on water during sampling and has the potential to withdraw dissolved gases from solution. The omission of DO for these locations in the database is considered defensible because measured Eh was used as input to the computer code WATEQ4F. Sensitivity studies using this code indicated that the influence of DO on Eh status is insignificant in waters with low pH and large concentrations of dissolved iron.

After the Eh and pH measurements, the sample was immediately acidified with nitric acid for element analyses by an inductively coupled plasma emission spectra analyzer (ICP) in the laboratory. When time allowed, duplicate samples were collected for sulfate and chloride analyses using an ion chromatograph (IC). Separate aliquots from one sample run were preserved to a pH of 2 with hydrochloric acid for arsenic speciation analyses. Separate aliquots from two sampling trips were collected for laboratory iron speciation analyses.

Water samples taken with the BAT sampler were not filtered to 0.45 μ m for several reasons. First, for the purpose of evaluating trends, the filtration capability of the ceramic tips (estimated by the manufacturer to be 1 to 2 μ m) would be adequate. Second, the in-line filtration apparatus has several points where atmospheric air is trapped prior to sampling. A priority of the experimental design was to prevent exposure to the atmosphere during sampling; therefore, it was concluded that one order of magnitude of filter size (the difference between 0.45 and 2 μ m) could be sacrificed to prevent compromising Eh, pH, and other parameters critical to sulfide oxidation. To verify this assumption, one complete sample run was filtered to 0.45 µm after being collected with a syringeand-filter system (acquired after 1 year of sampling) to evaluate how the water quality data would compare with the data for the unfiltered (1 to 2 μ m, effective) samples. In no case did an element concentration differ by more than 9 pct, and in most cases, differences ranged from 0 to 4 pct.

GAS SAMPLES FROM BAT SAMPLERS

Thermoplastic BAT sampler tips (which have larger pore sizes than the ceramic tips) were installed in the vadose zone to sample pore gas. The vials were flushed with helium and evacuated as described above. Only in rare instances, such as spring infiltration or installation into the capillary fringe, did these installations yield any liquid. The rest of the time, because these tips were installed dry, the pore entry pressure was so high that only gas could be sampled. The vials were maintained at cool temperatures until analyzed with a gas chromatograph.

WATER SAMPLES FROM PVC MONITORING WELLS

Water samples from all PVC monitoring wells were collected in two ways. A peristaltic vacuum pump connected to dedicated 0.96-cm tubing was used for the shallow wells and dedicated downhole bladder pumps were used for the deep wells. Prior to sampling, the water levels were measured and the wells purged. The purge amount was generally at least two tubing volumes. However, because of the long recharge time (up to 12 h) required for the tailings monitoring wells, only one tubing volume was purged for these wells. Duplicate 125-mL samples, one acidified with nitric acid to a pH of 1.5 and the other not acidified, were collected from each well. Prior to collection, the samples were filtered through a prefilter, a 0.8- μ m filter, and a 0.45- μ m filter, all separated by mesh spacers. The sample containers were filled to the top and immediately capped for minimum exposure to oxygen.

FIELD DATA COLLECTION

Water Properties

On-site water measurements included pH, DO, conductivity, Eh, and temperature. Calomel electrodes and platinum-type electrodes with silver-silver chloride reference cells were used to measure pH and Eh. A Clarketype oxygen electrode and a flowthrough conductivity cell were used to measure DO and conductivity, respectively. When feasible, the electrodes, conductivity cell, and temperature probe were placed in a flowthrough chamber, and measurements were made as sample water passed through the chamber. When there was an insufficient amount of a sample to pass through the chamber, measurements were made in a small beaker. In some samples, alkalinity was measured using a field digital titration procedure.

Tailings Temperature

Tailings temperature data were collected for possible identification of high-oxidation zones and for input to the equilibrium thermodynamic computer model used in this research. Thermocouples were pushed into saturated and vadose zones of the tailings at depths corresponding to the depths of the BAT sampler tips in both clusters, that is, 0.61, 1.2, 2.1, and 4.9 m. The thermocouples were equipped with a surface connection to which a digital readout device had been attached to obtain the belowsurface temperatures. Temperature data were collected at each depth during each sampling trip. No high-oxidation zones were identified from the temperature data.

Head and Pore Pressure

Pore pressures at the B wells and water levels at the P and M wells were measured on each sampling trip prior to collecting samples. At the P and M wells, depth to water was measured with an electronic tape. All positive heads were normalized to sea level. At the B wells, a BAT downhole pressure transducer was used to measure pressure. Prior to installing the sampling vial (figure 4A), the pressure transducer (figure 4B) was lowered down the access tube and connected hydraulically to the downhole septum with the same type of spring-loaded hypodermic needle used for sampling. The BAT sampler pressure transducer is capable of measuring negative gauge pressures in the vadose zone, in the manner of a tensiometer. Negative gauge pressures are interpreted relative to phreatic surface where water pressure equals atmospheric pressure. Saturated zone B wells were monitored for positive pressure data using the same transducer.

In Situ Moisture and Density

A Campbell-Pacific Nuclear (CPN) 503 moisture density probe was used to measure moisture content and total density over continuous depth profiles at 12 locations on the tailings impoundment. Measurements were taken in June and August 1990 and in March 1991 and were made at 7.6- to 30.5-cm intervals down the access tubes. Of the 12 access tubes used with the CPN moisture density probe at the tailings impoundment, six were BAT sampler access tubes (stainless steel) and six were access tubes (aluminum) installed next to monitoring wells P1, P2, P3, P4, P5, and P6. The CPN 503 moisture density probe has two radioactive sources. The first is a cesium source that emits gamma rays, or photons. The more energy reflected back to the detector, the less the wet (solid plus liquid) density of the soil.

The second radioactive source is composed of americium and beryllium and emits "fast" neutrons. The detector only measures the return of "slow" electrons. A fast neutron must hit something of equal mass, such as a hydrogen nucleus, in order to be slowed to a speed measurable by the neutron detector. The usual substances in soil that contain hydrogen atoms are water, plant organic material (which is primarily water), and hydrocarbons. Therefore, as long as negligible organic material and hydrocarbons exist in the soil, the detector measurement is correlated to moisture content. If the soil is high in boron, there may be an interference problem because the boron nucleus is about the same mass as a hydrogen nucleus. Generally water is the only significant hydrogen source in a soil and boron is rarely present.

Hydraulic Conductivity

The BAT sampler system was designed for in situ point measurements of hydraulic conductivity. The theoretical basis for the test is Hvorslev's solution for a variable head (rising or falling) test for radial flow from an open standpipe. BAT Envitech has adapted the solution for its system (Petsonk, 1984). In particular, incorporation of Boyle's gas law, which relates volume to pressure, is necessary because the testing procedure includes positive or vacuum pressurization, depending upon whether one is doing an outflow or an inflow test. Other adaptations of the formula include corrections for (1) variations in crosssectional area over the length of the testing apparatus and (2) geometry of the filter tip. BAT Envitech has written software to perform these calculations (Petsonk, 1984).

To perform a hydraulic test, a double-ended sampling vial is used in series with a pressure transducer. The vial is lowered down the access tube to establish hydraulic connection with the filter tip when the spring-loaded hypodermic needle pierces a septum in the vial and another septum at the top of the filter tip. The filter tip must be more permeable than the formation. For this reason, only the completions in the saturated zone with the large-pore-sized thermoplastic tips were used. This way, the filter tip would not limit hydraulic conductivity. When the vial, extension pipe, and pressure transducer unit are charged with a known volume of water and a known volume of positively pressurized gas, the system will force fluid into the tailings pores when hydraulic connection is established (outflow test). If the vial is evacuated, an inflow test is performed. The hydraulic conductivity is calculated repeatedly during the test until a consistent value is reached. However, it is important to ensure that all the water in the vial is not forced into the tailings pores, which would force gas into the tip. To safeguard against this possibility, the BAT software calculates the pressure at which all the water would be forced from the vial and reports a pressure within 80 pct of that value as a safety threshold at which to stop the process.

Groundwater Flow Direction and Velocity

A sodium chloride tracer test was performed to determine the groundwater flow and direction in the colluvium downgradient of the tailings. In this test, a solution of sodium chloride was gravity fed into well M2, and an attempt was made to trace the salt plug downgradient on preestablished grid lines using electromagnetic terrain conductivity equipment. In the initial test, the salt plug was traced only 76.2 m downstream. After that, no conductivity differential could be detected. Because of this short distance from the injection point, the results were deemed too high because of the influence of the gravity injection pressure (about 2.4 m of head) of the sodium chloride solution, and a second test using a different method was used.

In the second test, a borehole-to-surface electrical test was performed. The field test was conducted by personnel from the Department of Geophysical Engineering of the Montana College of Mineral Science and Technology, Butte, MT. For this test, a current electrode was positioned within the borehole at the depth of interest and another placed at electrical infinity. A radial array of equally spaced potential electrodes were placed on the surface. An electrolytic solution was injected into the zone of interest, and as the solution plume was mobilized by the groundwater flow, a direct current from the downhole electrode was introduced into the conductive region. The recorded potential differences measured on the surface were used to compute apparent resistivity, electrical plume length, actual plume length, and groundwater velocity.⁴

LABORATORY DATA COLLECTION

Water Analysis

Water samples brought in from the field were analyzed for total silver, aluminum, barium, boron, cadmium, calcium, copper, iron, lead, magnesium, manganese, nickel, potassium, silicon, sodium, sulfur, and zinc on the ICP at the USBM's Spokane Research Center (SRC) chemistry laboratory. The ICP was used to measure concentrations of the anions sulfate and chloride. Samples were diluted when necessary so that concentrations fell within the linear operating ranges of both the instruments and available standards.

Pore Gas Analysis

A Nuclear-Chicago gas chromatograph (model 5341) was used to measure pore gas concentrations of oxygen and carbon dioxide. Samples were withdrawn by syringe needle from the BAT sampling vial and injected into the gas chromatograph through a septum port.

Column 1 was packed with a 60/80 molecular sieve to measure oxygen, nitrogen, and composite peaks. Column 2 was filled with 80/100 Chromosorb packing material to measure carbon dioxide and composite peaks. Experiments with flow rates of carrier gas, column temperature, and volume of sample injected were performed to yield a range of operation wherein retention times of peaks were consistent, peaks were well separated, and instrument sensitivity was optimized for the concentrations of oxygen and carbon dioxide expected.

The operating parameters used were as follows:

1. Carrier gas volume flow rate for Column 1 (oxygen) was 20 mL/min and 4 mL/min for Column 2 (carbon dioxide).

- 2. Temperature (both columns) was 30 to 32 °C.
- 3. Sample injection volume was 40 μ L.

The gas chromatograph was calibrated for each session by an analysis of "specialty gases" of known concentrations that were made up to requested mixes. A calibration line was generated for both carbon dioxide and oxygen during each chromatography session using air as one point and either 0.5 pct carbon dioxide in nitrogen or 2.0 pct oxygen in nitrogen as the other point.

Mineral, Chemical, and Physical Properties

Two separate mineral analyses were performed on splits of tailings samples taken in the field. Microscopic examinations were performed by the USBM's Western Field Operations Center, Spokane, WA, to determine the predominant constituents, especially the sulfide content, and a more detailed examination was performed by the U.S. Geological Survey (USGS) to determine sulfate reduction and secondary sulfide formation in the tailings base and subbase material. In the latter tests, polished sections were examined using a reflected-light microscope and a scanning electron microscope (SEM) with energydispersive scanning (EDS) capabilities. Photomicrographs were also taken.

Chemical analyses of solid samples below the tailings were performed under contract by IGAL, Inc. A modified sequential extraction procedure was used to help clarify the issue of metal fixation in the sediments below the tailings.

Grain size, specific gravity, plasticity indices, and moisture content [American Society of Testing and Materials (ASTM) designations D422-63, D854-83, D4318-84, and D2216-80, respectively] of the tailings, organic layer below the tailings, and volcanic ash deposit below the tailings were determined at SRC's soils laboratory. A Micrometrics Instrumentation Corp. Sedigraph 5000 particle-size analyzer was used to determine fine grain-size distribution.

Iron and Arsenic Speciation

The speciation of iron and arsenic in an aqueous solution depends strongly on the Eh potential of the system and also on pH (Hem, 1985). Therefore, iron and arsenic speciation is often determined for systems where oxidation is important. Iron speciation was performed on water samples taken from the vadose and saturated zones of the tailings by a USBM chemist.

Arsenic speciation for this research was performed by IGAL, Inc., using a simultaneous extraction procedure developed by Mok and Wai (1987). Although dissolved arsenic concentrations were too low for accurate

⁴Information provided in "A Geophysical Investigation to Determine Groundwater Velocities at a Site in West-Central Washington," by W. R. Sill and K. J. Sjostrom. Final service agreement report to USBM, 1990, 13 pp.

measurement by ICP, trace concentrations exist in the pore water. The Mok and Wai procedure includes an extraction step that concentrates the sample, making it possible to measure concentrations that were originally below detection limits. An atomic absorption graphite furnace was used for the final measurements of elemental arsenic.

Because they are beyond the scope of this RI, results of the iron and arsenic speciation tests are not included.

DATA ANALYSIS AND RESULTS

PRESSURE AND HEAD MEASUREMENTS IN TAILINGS

Figure 5 shows gauge pressure data for the vadose zone, plotted throughout the 4 years of the field study. The pressures range from 0 (i.e., atmospheric pressure) to negative pressures of slightly less than -2 m. The pressures in the vadose zone are closest to atmospheric (saturated) pressure conditions immediately after the spring snowmelt during April and May. The gauge pressure data were measured to chart relative changes in moisture content. The matric suction in the vadose zone becomes less negative as the moisture content increases, reaching zero when the soil is saturated.

Gauge pressure was measured most often during 1988, so that year is best for comparing changes in relative moisture content in the shallow tips with those from the deeper tips at well clusters B1 and B2. As the snow melted in the spring, there was a 1-month lag in peak gauge pressures (and therefore moisture content) between the shallow tip at well B1-4c,⁴ (1.2 m) and the deeper tip at well B1-7c (2.1 m). A 1-month lag in peak readings was also discernable between the 1.2- and 2.4-m sampling depths at wells B2-4c and B2-8c.

The 1989 measurements for three of the four vadose zone tips show a distinct increase in pressure, and therefore in moisture content, during the autumn months. This is probably because there was significantly more rainfall in the region during the autumn of 1989 than during the autumn of 1988. It is not obvious why the heads at the tip at well B1-7c did not follow this trend.

Figure 6 shows the head measurements collected in the piezometers and BAT sampler tips in the saturated zone. A seasonal trend is obvious for all samples, whereby heads in the impoundment are highest in the spring after snowmelt and lowest in the winter. A trend in head pressure is apparent among the sampling locations: The most upgradient wells in the tailings (wells P6, P5, P4, and B1-16) have the highest heads, followed by well B2-16, which is farther downgradient in the tailings.

GAS CONCENTRATIONS IN TAILINGS PORE SPACES

The percentages of oxygen and carbon dioxide in the gas phase in vadose zone pore spaces are presented graphically in figure 7. The approximate depths from ground level at each location are shown in table 2.

Oxygen

In wells at both well cluster B1 and well cluster B2, the concentrations of oxygen decreased with depth (table 4). This finding is similar to the findings of two other studies, one in a sulfidic uranium tailings impoundment (Cherry and others, 1980) and one in sulfidic tailings and alluvium at the Homestake Mine in Lead, SD (Cherry and others, 1986). In the first study (Cherry and others, 1980), oxygen concentrations at depths of 46 cm varied from 9 to 12 pct while oxygen concentrations at depths of 274 cm varied from 1 to 3 pct. In the second study (Cherry and others, 1986), oxygen pore gas profiles were compiled from the vadose zone at two locations in meander deposits of tailings and at two locations in a tailings impoundment. At a depth of 61 cm, concentrations of oxygen varied from 5 to 20 pct, while at a depth of 244 cm, oxygen concentrations varied from 1 to 10 pct.

Table 4.—Average concentrations of oxygen and carbon dioxide as a function of depth in vadose zone pore spaces, percent by volume

Gas	Well cluster B1		Well cluster B2		
	0.6 m	1.2 m	0.6 m	1.2 m	2.4 m
0	20.0	3.1	11.0	3.3	3.0
<u>CO2</u>	0.0	0.6	0.2	1.1	2.8

The decrease of oxygen with depth indicates that gaseous oxygen is consumed in the vadose zone. Cherry and others (1986) propose that the oxygen consumption is represented by

$$\text{FeS}_2 + (7/2)O_2 + H_2O \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+(\text{A})$$

when ferrous iron (Fe²⁺) remains in solution, and by

⁴The number following the hyphen is the sample depth in feet from ground level. The actual measurements were made using U.S. customary units.

$$FeS_2(s)$$
 + (15/4)O₂ + (7/2)H₂O → $Fe(OH)_3(s)$
+ 2SO₄²⁻ + 4H⁺ (B)

when iron hydroxide (FeOH) precipitates from excess ferric iron.

Carbon Dioxide

Concentrations of carbon dioxide gas in pore spaces of the vadose zone increase with depth (table 4). These findings are similar to those presented in Cherry and others (1980) in a study of the vadose zone of sulfidic uranium tailings. In this study, carbon dioxide gas concentrations rose from 0.3 to 0.8 pct at depths of 46 cm below the surface to 1.0 to 1.5 pct at depths of 274 cm. Cherry and others surmised that the high carbon dioxide concentrations in the deeper vadose zone were the result of root respiration and the decay of organic matter. This hypothesis offers only a partial explanation for the study site discussed here, which is poorly vegetated by grasses and supports brush and saplings only near the site perimeter. Also, grass root respiration is unlikely to extend to depths of 2.4 m. Another source of carbon dioxide could be microbial respiration (Wood and others, 1993). A 1992 bacterial identification study at the site showed the presence of the sulfate-reducing bacteria Thiobacillus, acidophilic heterotrophs, and aerobes at depths of 245 to 520 cm. No carbonates were found in the mineralogical analyses of surface samples, but near the surface, carbonates would have been consumed by acid early in the life of the impoundment.

HYDROLOGIC AND PHYSICAL PROPERTIES OF TAILINGS

The hydrologic, physical, and chemical conditions of the waste impoundment and the sediments immediately beneath the impoundment strongly influence the release and attenuation of contaminants. Water in the saturated tailings comes from precipitation, which seeps downward through the vadose zone; this water then flows into the groundwater below the tailings in the hydraulically connected underlying aquifer. Evidence also suggests groundwater may flow upward into the sediments beneath and possibly into the tailings through fractures in the bedrock below the colluvium.

Grain-Size Distribution

The vertical and horizontal seepage rates of water in the tailings may be influenced by the great reduction in grain size with depth. Grain-size distributions in composite samples at depths between 1.5 and 2.1 m and between 4.9 and 5.8 m near well P3 are shown in figure 8. At well P3 and at least two other locations, a layer of tailings containing silt-sized particles 60 to 90 pct finer than 0.02 mm lies at the base of the impoundment. The higher percentage of fines at increased depth may exist for many reasons.

1. A greater portion of fines in the vadose zone may already have been dissolved.

2. Some portion of the fines in the saturated zone may be precipitated oxidation products from constituents leached out of the overlying material.

3. Some of the fines in the vadose zone may have been cemented into larger, agglomerated particles.

4. Some portion of the fines resulting from weathering in the vadose zone may have been transported downward with time.

The change in grain-size distribution with depth may be correlated to the fact that water samples from the saturated zone have higher concentrations of many key elements than do samples from the vadose zone. Because finer materials have more surface area available for chemical interaction, which leads to more rapid dissolution, highly soluble fines in the vadose zone have probably already been dissolved.

It is important to note that the increase in the percentage of fines with depth in the impoundment will reduce hydraulic conductivity with depth.

Density and Moisture

Analysis of the data from the moisture and density profiles shows four distinct zones of moisture in and below the tailings. These zones are the vadose zone, the capillary fringe zone, the saturated zone in the tailings, and the saturated organic layer-silt zone below the tailings. The average in situ moisture, expressed as weight of water per weight of dry solids, of each zone is summarized in table 5. Based on moisture content, the vadose zone ranges from 1.5 m deep at well P6 to 2.7 m at well P2. This zone was about 34 pct saturated in June and about 30 pct saturated in August. The capillary fringe zone, identified as the zone above the water table in which the moisture content equals or exceeds the lowest moisture content reading below the water table, ranges from 0.9 to 1.8 m above the water table. Evaporation effects result in upward capillary flow and a reduction of average moisture content in the vadose zone between June and August. Evaporation effects could be seen to a depth of about 1.5 m, after which very little, if any, moisture changes occurred between spring and late summer.

Obtaining in situ moisture and density data at various locations allows the identification of zones or layers with

Well ID	Well ID Vadose zone		Capillary fringe	Saturated zone	Organic silt zone ²	
	June	August	June	June	June	
P1	9.9	9.7	ND ³	ND	ND	
P2	12.6	11.4	27.4	26.5	ND	
P3	11.1	9.5	26.5	27.1	46.9	
P4	9.4	8.1	27.6	27.7	ND	
P5	8.0	6.7	26.1	26.1	ND	
P6	8.6	7.5	22.1	21.9	ND	
B1-4	11.6	9.1	ND	ND	ND	
B2-4	10.2	10.4	ND	ND	ND	
B1-7	9.1	8.3	ND	ND	ND	
B2-8	12.1	10.5	ND	ND	ND	
B1-16	9,4	7.5	26.1	26.1	ND	
B2-16	12.4	10.9	(⁴)	29.4	ND	

Table 5.--Average moisture content in various zones in and below tailings, percent¹

¹Moisture content as a percentage is defined as the weight of water divided by the weight of dry solids times 100. Moisture contents in the perched water zones identified in wells P1, P2, P5, B1-16, and B2-16 are not included in the average.

²The organic-silt zone is a zone of material below the tailings. This zone has higher moisture content and lower density than the tailings.

³ND No data. In all cases, the access tubes for in situ moisture measurements were not driven to these zones at these wells.

⁴All moisture contents above the water table were less than any measured below the water table.

excessively high or low moisture contents or densities. These zones could indicate perched water, different material types, layers, or other anomalies that might influence the downward migration of contaminants.

Tailings Layering

Physical and chemical heterogeneities are not uncommon in milled tailings impoundments, and this study site was no exception. Spatial variations in physical property values in tailings piles can result from differences in ore mineralogy, short-term changes in milling processes, depositional history, or weathering after deposition. The tailings at the study site are layered, and layers differ on the basis of color, texture, grain size, density, and moisture content. The influence of these physical heterogeneities on water chemistry and water movement may vary depending on locality.

The moisture content and density profile in figure 9 at well B2-4c shows an isolated layer of high moisture and low density in the vadose zone about 46 cm below the surface. A tailings sample (B-2) was collected from the surface to a depth of 61 cm through this layer near well B2-4c and examined. In the middle of the sample was a hardpan layer. The hardpan sample did not soften or decompose when it was exposed to water or concentrated acid in the laboratory. The tailings above the hardpan appeared to be more oxidized, much lower in moisture content, and coarser in grain size than the tailings below the hardpan. The grain-size distributions of samples above and below the hardpan are shown in figure 10. A dramatic reduction in grain size between the top and bottom of sample B-2 can be seen. The explanation of this large difference, although not clear, possibly relates to the chemical and physical weathering of particles, or perhaps the cementation of particles above the hardpan but not below.

The hardpan in sample B-2 divides coarse and fine tailings, probably restricts the downward flow of atmospheric oxygen, and reduced water seepage velocity. This has two effects on contaminant migration and attenuation. First, because oxidation is required in the acid-generation process, acid generation below the hardpan is slowed. Second, the hardpan appears to influence pore water quality. The data in table 6 show that concentrations of most metals in solution increase with depth in well cluster B1 but decrease with depth in well cluster B2. This difference may be related to the hardpan within the well cluster B2. Because the seepage velocity is lower through the hardpan and the finer material below, the H^+ ion may be given enough residence time to consume the neutralizing agents resulting from silicate and aluminosilicate mineral dissolution, resulting in more sulfide oxidation products in solution at the 1.2-m level. At well cluster B1, where there is no hardpan, the sulfide oxidation products and H⁺ appear to move freely downward, resulting in higher metal concentrations and lower pH with depth.

Similar findings were reported at the Heath Steele Mine's tailings dump in New Brunswick (Boorman and

Constituent		Well cluster E	31	v	Vell cluster B2	2
	1.2 m	2.1 m	4.8 m	1.2 m	2.4 m	4.8 m
pH	3.76	3.73	3.49	3.16	3.74	3.89
Element:						
Al	55	582	2,479	552	501	147
Са	96	466	531	428	451	458
Сч	15	113	16	137	102	50
Fe	75	811	12,864	2,013	1,194	763
К	12	4	59	2	6	4
Mg	93	372	2,429	. 329	416	155
Mn	2	9	159	8	12	8
Na	6	36	38	17	29	17
Pb	0.20	0.40	5	0.70	0.70	2
S	366	2,303	15,614	3,013	2,531	1,317
Si	70	49	41	100	34	32
Zn	7	46	1,539	140	178	78

Table 6.--Average constituent concentrations in well clusters B1 and B2, parts per million

NOTE.—Averages are calculated on analysis of 14 to 16 different water samples taken over 2 years. Well cluster B2 is about 46 m southeast of well cluster B1. Depths are from ground level to the center of the porous sampling tip.

Watson, 1976). The Canadian researchers describe the hardpan as being 5 to 10 cm thick, lying 25 to 50 cm below the surface between the oxidation zone and the reduction zone, and consisting of tailings cemented with iron hydroxides, oxides, and gypsum. In addition, the hardpan contained high levels of copper and zinc that precipitated as a result of chemical reactions. In 1985, the pore water chemistry at the Heath Steele tailings dump was found to be about the same as it was in 1976. The consistency of the geochemistry over the 9-year period was attributed to the effect of the hardpan (Blowes and others, 1987).

Hydrologic Characteristics

Based on three-point solutions of average potentiometric elevations among wells P4, P5, and P6, and among wells P4, P5, and P1, the direction of the horizontal component of flow from well P5 was determined (shown by an arrow on figure 3). The potentiometric surface in the direction of flow dips about 0.78 m over a distance of about 140 m between well P6 and well P1, resulting in a relatively flat horizontal hydraulic gradient of 5.6×10^{-3} m/m. This measurement was compared with an even flatter horizontal gradient of 6.0×10^4 m/m from well P5 to well P4. Downgradient horizontal hydraulic gradients were 3.9×10^{-2} m/m and 2.2×10^{-2} m/m between the shallowest piezometers of well M2 and well M4 and between the shallowest piezometers of well M4 and well M5, respectively. Spacings between wells in the saturated tailings were inadequate for determining the vertical component of the hydraulic gradient. However, in the multiple-completion background and downgradient wells, the vertical component of flow direction and vertical hydraulic gradients were determined at wells BKG, M2, M4, and M5 and are shown in table 7. In situ

measurements determined with the BAT system indicated an average hydraulic conductivity in the saturated tailings of 2×10^{-5} cm/s.

Other hydrologic properties that affect downgradient contaminant transport at the study site are advection and dispersion. Based on the difference in estimated horizontal groundwater flow velocities $(2.7 \times 10^4 \text{ m/d} \text{ in the}$ saturated tailings and 0.6 m/d in the downgradient aquifer) (Stewart and others, 1990),⁵ the transport of contaminants by flowing groundwater (advection) is much greater in the downgradient aquifer than in the tailings. Because the shallow aquifer at this site is narrow, transverse dispersion is probably constrained and only longitudinal dispersion occurs freely.

From a positive environmental aspect, the decrease in hydraulic conductivity and the relatively flat gradient through the tailings results in a very slow and naturally controlled release of soluble metals from the tailings into the downgradient environment, allowing for maximum dilution and chemical precipitation. However, the long periods over which the pore water is in contact with the tailings facilitates long-term mechanical weathering and allows completion of slower kinetic chemical reactions.

The vertical component of gradient in wells BKG and M5 indicates an upward flow direction between the intermediate and the shallow completions in the spring and late summer, indicating a more continuous recharge in the shallow alluvium. At well M2, the direction of the vertical flow component appears to go upward in the spring and downward in late summer. At well M4, the flow direction is downward even during the spring recharge, possibly indicating discharge into a bedrock fracture.

Well ID	Season	Vertical flow direction	Horizontal gradient, m/m
BKG-6→BKG-20	Spring	Upward	0.016
BKG-6→BKG-20	Late summer , .	Úpward	0.015
BKG-20→BKG-43	Spring	Downward	0.002
BKG-20→BKG-43	Late summer	Downward	0.001
M2-4→M2-6	Spring	Upward	0.004
M2-4→M2-6	Late summer	Downward	0.007
M2-6→M2-12	Spring	Upward	0.032
M2-6→M2-12	Late summer	Upward	0.002
M4-5→M4-7	Spring	Downward	0.038
M4-5→M4-7	Late summer	Downward	0.144
M4-7→M4-10	Spring	Downward	0.022
M4-7→M4-10	Late summer	Downward	0.089
M5-4→M5-23	Spring	Upward	0.092
M5-4→M5-23	Late summer	Upward	0.116
M5-23→M5-53	Spring ,	Downward	0.133
M5-23→M5-53	Late summer	Downward	0.132

Table 7.-Vertical component of hydraulic gradient and flow direction for background and downgradient multiple-completion wells.

PROPERTIES OF SEDIMENTS BELOW TAILINGS

Hydrologic and Physical Characteristics

Solid samples collected during initial drilling clearly indicate that the tailings were deposited in a shallow, swampy lake basin. Below the tailings is an organic-rich silt layer 30 to 60 cm thick containing abundant snail shells. Below this layer is a layer of silt 3 to 4.5 m thick. Atterburg limit determinations indicate the silt has a liquid limit of 66.7 pct and a plasticity index of 7.2. According to the Unified Soil Classification System (U.S. Bureau of Reclamation, 1963), this material is in the MH soil classification group, indicating it to be inorganic silts, micaceous or diatomaceous fine sandy or silty soil (elastic silt). MH soils are generally very absorptive, have low dry strength, and exhibit slow dilatancy. An EDS spectrum of this material showed abundant silicon and detectable amounts of aluminum, potassium, calcium, and iron. In addition, secondary kaolinite minerals could be present. Kaolinite is formed by weathering or hydrothermal alteration of aluminum silicates, particularly feldspar (Klein and Hurlbut, 1985).

Figure 11 illustrates that at a depth of 5.8 m, the silt zone has a lower density than the tailings and contains 1.7 times more water by weight per unit volume than the tailings. The average water content and bulk density of the silt below the tailings at well P3 (measured in June 1989) were 46.9 pct by weight and 1.17 g/cm³, respectively. By comparison, the average water content and bulk density in the saturated tailings at well P3 were 27 pct and 1.60 g/cm³, respectively. Using the average bulk densities measured in June 1989 and the average specific gravity of solids in each zone (determined by specific gravity tests on samples collected at the study site), the porosity for the saturated tailings was 42.8 pct and 54.4 pct for the saturated silt. These measurements were consistent with the presence of the organic material underlain by lacustrine silt, as identified during drilling.

Mineral Analysis

To get a better understanding of the fate of the concentrated contaminants that exist in the tailings, a detailed mineral analysis of the organic-rich layer and other sediments below the tailings was undertaken. This work was performed under contract by Dr. Charles Alpers of USGS. The objective of the analysis was to determine if the organic-rich layer was causing any attenuation of metals migrating from the tailings. To investigate this possibility, evidence was sought for sulfate reduction and secondary sulfide formation in the organic-rich layer. Several samples of the organic-rich material were prepared and examined using a reflected-light microscope and SEM with EDS capabilities. A description of each sample observed by Dr. Alpers is found in appendix C. The following is a summary of Dr. Alpers' report to the USBM:

Sediment samples from the field site were scanned in two batches, one collected during 1988, the other during 1990. The 1988 samples (eight in all) consisted of dried powders taken from various depths while drilling monitoring wells P 4, P 5, and P 6. Polished sections were prepared of the fine-grained fraction of these samples by first screening the samples at 60 mesh and then mounting the fine-sized fraction in 1-in-diam epoxy blocks. These polished sections were examined using a reflected-light microscope and a SEM with EDS capabilities.

The 1990 samples were delivered in frozen state as sections of intact, split barrel samples collected while drilling monitoring wells B2A, P3A, and P3C. The cores arrived wrapped in cellophane and aluminum foil. The sampling strategy was to sample the organic-rich layer near to the tailings-sediment interface in each core as well as other locations at approximately 30-cm intervals. These samples were dried in an oven overnight at about 90° C, and then were mounted on aluminum disks for SEM analysis. No polished sections were prepared for the 1990 samples.

Results indicate the organic-rich layer is host to numerous framboidal spheres composed of Fe and S and assumed to be pyrite. This indicates a strong reducing environment, where bacteria are able to reduce aqueous sulfate to aqueous hydrogen sulfide, in the presence of sufficient iron to produce solid iron sulfides. This process is only possible where the sulfate-reducing bacteria have sufficient sources of aqueous sulfate, organic carbon, iron, and nutrients, such as ammonia and phosphate (Goldhaber and Kaplan, 1982).

Rates of sulfate reduction are highly variable; complete sulfate removal in marine sediments can take hundreds of years (Goldhaber and Kaplan, 1982). In some marine sites of rapid burial, significant sulfate reduction can take place in years to tens of years (Chanton, Martens, and Goldhaber, 1987). If none of the crucial ingredients are limiting, sulfate reduction can proceed in relatively fast rates, and it would be possible to produce the observed framboids in their entirety after the disposal of the tailings in the 1930's and following years. However, it is more likely that the framboidal pyrite was present prior to the introduction of the tailings.

One possibility with respect to metal mobilization at this tailings site is that the reducing environment represented by the neo-formed sulfides could be a site of metal fixation. Thus, metals leached from the oxidized tailings could be fixed in the organic-rich, sulfide-bearing layer.

However, other than the pyrite framboids, no secondary base-metal sulfides were observed. If metals leached from the tailings had been actively reduced, coatings on the framboids consisting of minerals such as chalcocite, covellite, and digenite (Cu-sulfides) or sphalerite (Zn-sulfide) might be expected. These minerals are commonly observed in zones of sulfide enrichment, formed below the water table in actively oxidizing base metal sulfide systems (Alpers and Brimhall, 1989). Given that no such secondary base-metal sulfides were observed, it seems that any metals that are being fixed because of flow through the sulfide-rich organic layer are indeed being fixed by adsorption onto organic material.

Chemical Analysis

To help clarify the issue of metal fixation in the sediments below the tailings, chemical analyses using a modified sequential extraction procedure were performed on samples collected near the base of the tailings and up to 150 cm below the base. The samples were obtained during the 1990 drilling of wells P3A, P3C, and P2A and were taken at 15 to 61 cm below the tailings in the organic layer (P3A), 122 cm below tailings and below the organic layer (well P3C), 15 to 61 cm above the base of tailings and above the organic layer (well P2A), and 15 to 61 cm below the tailings in the organic layer (well P2A). These tests were performed, under contract, by IGAL, Inc.

In the sequential extraction procedure used, five fractions were chosen that were likely to have been affected by various environmental conditions. These were fraction 1, exchangeable; fraction 2, bound to carbonates; fraction 3, bound to iron and manganese oxides; fraction 4, bound to organic matter; and fraction 5, bound to sulfides. Six elements (silicon, aluminum, iron, manganese, copper, and lead) in all five fractions were analyzed by atomic absorption spectrometry. Calcium and magnesium were determined by ICP analysis.

Results of the sequential extraction tests are shown in appendix D. These results indicate that solid-phase lead and copper were not present to any great extent in the organic-rich layer or silt zone below the tailings, but were present in the base of the tailings. Lead was bound primarily in the sulfide-residual and oxide phases at the tailings base, and copper was bound primarily in the sulfide-residual phase at the tailings base. Both did not appear to be remobilizing below the tailings. Solid-phase iron and manganese were abundant in the organic-rich layer and silt zone below the tailings. In the organic-rich layer, iron was present in the oxide, sulfide, and carbonate phases, with the oxide phase being the most dominant. A smaller, but significant, amount of iron was bound to organic matter in this layer. Iron was bound primarily to sulfides in the tailings base and to carbonates in the silts below the organic-rich layer. Manganese was also bound to carbonates. These data indicate that some of the reduction of iron and manganese in the pore water of the organic-rich layer and silts below the tailings is due to iron carbonate and manganese carbonate precipitation.

f iz f iz

Ander Call

Although calcium and magnesium were present in several phases in the organic-rich zone, they appeared most abundant in the silts below the organic-rich layer, primarily in the carbonate form. Carbonate dissolution in this zone is probably the major source of calcium and magnesium in the gravel aquifer downgradient from the tailings impoundment.

WATER QUALITY

Water quality data were collected upgradient from the tailings (BKG wells), from the vadose and saturated zones of the tailings (B and P wells), from below the tailings, and from different distances downgradient of the tailings (M wells). The results of each sampling trip are shown in appendix B, and the averages are summarized in tables 8 through 10. Systematic errors, such as erratic measurements in all samples from one collection trip, do not appear. At most, two samples in one sample run were anomalous, and even in these instances, it was impossible to determine whether the samples were mislabeled, contaminated, misdiluted, or improperly analyzed by the ICP. Because no systematic reasons for rejection were identifiable, rejection decisions were made on a statistical basis. All data outliers were rejected on the basis of the Grubbs test (Taylor, 1990) using $\alpha = 0.001$. This very small value of α ensured that only the most extreme data were rejected. The data were grouped by element at each sampling location across all sampling trips for detection of outliers.

Arsenic data are not reported because they were found to be below or near detection limits for the ICP, and the ICP does not provide accurate measurements of arsenic near the detection limit. Many of the variations in concentration discussed in the following sections are described in terms of mineralogical solubility controls, which are briefly mentioned here because they may influence the relative concentrations of various constituents. Discussions will be limited to values from the tailings and Quaternary colluvium only. Values from the bedrock will not be discussed, except where there appears to be an effect of bedrock waters on tailings and shallow colluvium waters. Values from sediments immediately below the tailings are discussed in the section on "Water Quality Below Tailings."

Eh and pH

There is no apparent seasonal (temporal) variation for either Eh or pH. The vadose zone is generally more acidic (with lower pH values) than the saturated zone. Similarly, the Eh values in the vadose zone are consistently oxidizing, whereas the saturated zone waters are more variable and less oxidizing. These findings were expected. Because the vadose zone has oxygen gas in the pore spaces, sulfides would be oxidized, producing sulfuric acid, which causes pH to decrease. As the waters percolate deeper, however, less oxygen but more (fresh) solids are available to react with the acid. Thus, Eh is likely to decrease and pH to increase. In the vadose zone, average pH and Eh are 3.6 and 540 mV, respectively, and in the saturated zone these values are 4.2 and 450 mV, respectively. Downgradient at well M5-4, pH gradually increases to 7.1, which is the background level shown at well BKG-6. This is a result of hydrogeochemical reactions, dilution, and dispersion. Downgradient, Eh averages 360 mV at well M5-4, a value that is only slightly lower than the average background Eh of 400 mV at well BKG-6.

	B1-4	B1-7	B2-4	B2-8	Average
Eh, mV	540	540	560	520	540
рН	3.80	3.70	3.20	3.70	3.60
Element, mg/L:					
Al	59.00	450.00	650.00	430.00	400.00
В	0.25	2.10	7.10	2.90	3.10
Ba	0.02	0.02	0.01	0.01	0.02
Ca	100.00	450.00	400.00	460.00	350.00
Cd	0.02	0.20	0.98	1,10	0.58
Cu	12.00	98.00	140.00	91.00	85.00
Fe	80.00	700.00	1,900.00	1,000.00	920.00
К	10.00	4.00	2.70	5.90	5,70
Mg	90.00	320.00	320.00	360.00	270.00
Mn	2.00	8.30	8.10	10.00	7.10
Na	8.20	37.00	15.00	28.00	22.00
Ni	0.30	0.32	0.34	0,45	0.35
Pb	0.21	0.34	0.61	0.63	0.45
S	350.00	2,000.00	3,000.00	2,200.00	1,900.00
Si	63.00	48.00	94.00	33.00	60.00
Zn	7.20	40.00	139.00	160.00	87.00

Table 8.—Arithmetic means of analysis and chemical characteristics of tailings pore water from vadose zone

	P4	P5	P6	B1-16	B2-16	Average
Conductivity, µS/cm	7,850	6,953	> 10,000	NM	NM	NM
Eh, mV	390	470	400	490	500	450
рН	4.70	4.10	4.70	3.50	3.90	4.20
SO₄, mg/L	23,000	NM	NM	39,000	3,900	NM
Element, mg/L:						
Al	70.00	990.00	18.00	2,300.00	140.00	700.00
В	22.00	19.00	64.00	28.00	2.10	27.00
Ba	0.02	0.04	0.03	0.01	0.01	0.02
Са	440.00	430.00	540.00	500.00	460.00	474.00
Cd	2.50	4.50	0.04	17.00	1.00	5.00
Cu	9.80	290.00	26.00	16.00	48.00	78.00
Fe	8,800.00	7,800.00	22,000.00	11,000.00	740.00	10,000.00
κ	76.00	31.00	71.00	54.00	4.20	47.00
Mg	1,500.00	1,100.00	4,000.00	2,000.00	150.00	1,800.00
Mn	170.00	63.00	250.00	140.00	7.80	130.00
Na	45.00	18.00	24.00	39.00	17.00	29.00
Ni	1.90	1.20	4.40	3.20	0.19	2.20
Pb	2.40	3.20	5.00	5.20	2.20	3.60
S	7,900.00	8.000.00	21,000.00	13,000.00	1,300.00	10,000.00
Si	30.00	35.00	17.00	40.00	29.00	30.00
Zn	840.00	550.00	3,200.00	1,300.00	74.00	1,200.00

 Table 9.—Arithmetic means of analysis and chemical characteristics of tailings

 pore water from saturated zone

NM Not measured or only one measurement made.

Sulfur, Iron, and Manganese

Iron and sulfur are presented together because they are the predominant dissolved constituents in all tailings water samples and the primary constituents of pyrite. The dissolved iron in this system is in the form of ferrous and ferric iron. Sulfate concentrations measured by IC for several sample runs verify the assumption that all dissolved sulfur measured by ICP is in the form of sulfate. While sulfate is the predominant anion in the tailings pore waters, small concentrations of chloride were also detected. Manganese is presented with sulfur and iron because manganese behaves in a manner similar to iron chemically and mineralogically. As is iron, manganese is influenced by redox in weathering environments (Hem, 1985); downgradient of the low-pH zone, manganese should form oxides that scavenge other metals that are included subsequently in the oxide mineral matrix.

The solubility of iron and sulfur minerals is controlled by Eh and pH. Iron and sulfur concentrations with depth are nearly identical, which reflects their high correlation as a result of pyrite oxidation. Concentrations are generally higher in the saturated zone than in the vadose zone. In the vadose zone, the mean concentrations of iron and sulfur are 920 and 1,900 mg/L, respectively. In the saturated zone, the mean is 10,000 mg/L for both constituents. In the acidic environment of the impoundment, the high concentrations of iron and sulfur are probably attributable to the solubility of metal sulfate minerals such as melanterite, which is a ferrous species, and the jarosites. The pale green color of the tailings pore water samples verifies the dominance of ferrous iron. In the impoundment, most of the manganese will occur as the manganous (Mn^{2+}) and sulfate (SO_4^{2-}) ion pair. The mean values for manganese in the vadose and saturated zones of the tailings are 7.1 and 130 mg/L, respectively.

Downgradient, sulfur attenuates to only 390 mg/L at well M5-4, a level four times background (92 mg/L at well BKG-06). However, iron attenuates rapidly to 0.64 mg/L at well M5-4, a level below that of background (0.77 mg/L at well BKG-6). The difference in attenuation between the two is caused by the species that control solubility. In neutral-pH environments, such as found downgradient of the study site, the concentration of sulfur is often controlled by gypsum solubility, whereas downgradient concentrations of iron are probably controlled by solubility of ferric species (goethite and ferrihydrite). Manganese attenuates to a mean of 0.42 mg/L at well M5-4, a level that is 14 times background (0.03 mg/L at well BKG-6), but well below the mean impoundment value of 85 mg/L. This reduction is probably controlled by coprecipitation with iron and by manganese-carbonate solubility.

	BKG-6	BKG-20	BKG-43	M1-2	M1-3	M1-8	M2-4	M2-6	M2-12	M3-10	M4-5	M4-7	M4-10	M5-4	M5-23	M5-53
Conductivity, µS/cm	490	<u>096</u>	930	1,000	1,200	1,300	1,600	1,400	1,200	830	2,400	1,800	2,600	1,800	450	450
Eh, mV	400	210	220	410	250	190	370	350	280	200	410	360	280	360	340	170
HCO ₂ ⁻¹ , mg/L	340	MN	ΜZ	Σ	505	647	240	WN	WN	MN	437	543	WN	421	176	128
рНн	7.10	7.50	7.60	5.90	7.10	7.10	6.40	6.50	6.90	7.20	6.80	6.90	7.10	7.10	7.60	8.40
SO4 ⁻² , mg/L	230	310	300	2,500	720	720	870	880	600	460	2,200	1,900	1,900	1,000	220	160
Element, mg/L:																
A	0.21	0.23	0.30	0.84	0.34	0.38	0.37	0.36	0.26	0.25	0.38	0.38	0.37	0.34	0.36	0.34
B	0.18	4.30	5.00	0.63	0.41	0.43	0.17	0.20	0.51	0.31	0.32	0.37	0.46	0.29	1.20	2.40
Ba	0.03	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.06	0.08	0.05
Ca	140.00	47.00	36.00	480.00	260.00	290.00	290.00	280.00	270.00	220.00	610.00	625.00	530.00	390.00	74.00	12.00
Cd	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cu	0.05	0.05	0.05	0.24	0.08	0.05	0.05	0.07	0.07	0.05	0.18	0.13	0.10	0.08	0.06	0.05
Fe	0.77	0.93	0.64	260.00	14.00	13.00	1.20	4.50	1.40	3.40	0.57	1.60	2.70	0.64	1.30	0.52
Κ	2.30	2.30	2.60	14.00	3.50	3.20	6.50	6.20	2.20	2.20	8.70	2.00	5.10	4.30	0.70	0.20
BM	29.00	27.00	19.00	280.00	79.00	71.00	96.00	91.00	66.00	37.00	210.00	180.00	140.00	120.00	11.00	0.50
Mn	0.03	0.15	0.03	31.00	5.60	3.50	22.00	22.00	4.70	2.00	1.90	1.00	1.10	0.42	0.11	0.03
Na	20.00	180.00	210.00	23.00	72.00	31.00	25.00	25.00	45.00	23.00	30.00	59.00	210.00	53.00	100.00	120.00
Ni	<0.05	<0.05	<0.05	0.21	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pb	0.06	0.06	0.07	0.11	0.07	0.09	0.08	0.07	0.07	0.07	0.09	0.00	0.08	0.07	0.06	0.06
S	92.00	110.00	210.00	920.00	290.00	260.00	290.00	290.00	270.00	140.00	730.00	700.00	650.00	390.00	95.00	58.00
Si	14.00	10.00	10.00	23.00	9.30	11.00	14.00	14.00	12.00	11.00	19.00	16.00	21.00	15.00	13.00	6.40
Zn	0.11	0.08	0.07	56.00	0.38	0.14	0.21	0.16	0.08	0.09	0.39	0.12	0.12	0.16	0.14	0.09
NM Not measured.																

Table 10.—Arithmetic means of analysis and chemical characteristics of downgradient and background water

18

L, u

Lead and Nickel

Based on electronic configuration of their atoms, lead is a representative element and nickel is a transition element. Lead generally has a low solubility and is only superficially attacked by dilute sulfuric acid. Lead concentrations may frequently be less than that predicted by solubility conditions for a given pH. Hem (1976) believes much of this discrepancy can be attributed to cation exchange. However, the strong sorbtion characteristics of lead may also be a contributing factor. Nickel often substitutes for iron and consequently its major source in the tailings is probably pyrite. The mobility of both elements tends to be low and controlled by coprecipitation with iron and manganese oxides. The mean values of lead and nickel in the vadose zone of the study area are 0.45 and 0.35 mg/L, respectively, and in the saturated zone are 3.6 and 2.2 mg/L, respectively. Downgradient, lead attenuates to 0.07 mg/L at well M5-4, very near background levels of 0.06 mg/L at well BKG-6. Nickel levels are at or below background levels of 0.05 mg/L at well M5-4.

Cadmium and Zinc

Cadmium is a common replacement cation for zinc in the sphalerite lattice and would be released with zinc during dissolution within the impoundment. Both are soluble in dilute acidic, oxidizing conditions, such as in the impoundment, and can have rapid reactions with these acids when associated with other, less reactive metals as a result of couple action. Both zinc and cadmium precipitate as hydroxides and carbonates in the presence of equivalent amounts of alkali or are adsorbed by the soil solid phase. The mean values of cadmium and zinc in the vadose zone of the tailings are 0.58 and 87 mg/L, respectively, and in the saturated zone are 5.0 and 1,200 mg/L, respectively. Downgradient concentrations at well M5-4 are less than 0.01 and 0.09 mg/L, respectively, both equal to or below background concentrations.

Barium and Boron

Boron is a common trace constituent in feldspars and micas, and the borate ions are most soluble under acidic, oxidizing conditions, such as in the impoundment. The high boron concentrations found in the impoundment are unusual and probably result from the acid dissolution of borosilicates. Unlike boron, barium in the sulfate form is extremely insoluble and will tend to precipitate in the tailings. This is evidenced by the low concentrations of barium in the tailings pore water samples and by the abundance of barite in the solid tailings as determined by SEM. Mean concentrations of boron and barium in the vadose zone are 3.1 and 0.02 mg/L, respectively, and in the saturated zone are 27 and 0.02 mg/L, respectively. Downgradient, boron attenuates to 0.29 mg/L at well M5-4, slightly higher than background levels of 0.18 mg/L at well BKG-6. Barium levels stay relatively constant, with an average of 0.06 mg/L at well M5-4 and an average background level of 0.03 mg/L at well BKG-6.

Aluminum and Copper

These metals are presented together because they exhibit slightly different behaviors than the metals discussed previously. The behavior of aluminum is unique because saturated zone concentrations (with the exception of concentrations from well B1-16) are approximately equal to those in the vadose zone. Below pH 4.5, aluminum concentrations are limited by solubilities of basic aluminum sulfate minerals. Between pH 4.5 and 4.9, jurbanite may limit solubility. Aluminum solubility in waters of pH greater than 4.9 is reported to be controlled by the gibbsite solubility product (Nordstrom and Ball, 1986), and gibbsite is more likely to precipitate with increasing pH. Gibbsite solubility may be the factor that causes aluminum to have a relatively constant concentration across the transition zone. The mean concentration of aluminum in the vadose zone is 400 mg/L and in the saturated zone is 700 mg/L. Downgradient at well M5-4, the mean value is 0.34 mg/L, slightly higher than the mean background level of 0.21 mg/L at well BKG-6.

Copper has concentrations similar to those of aluminum in the saturated and vadose zones of the tailings. In view of the fact that the tailings are from a copper mine, the concentrations of copper are extremely low. Hem (1985) notes that if copper concentrations are less than those predicted by pH-Eh diagrams (thermodynamic chemical equilibria), then the lower concentrations are probably caused by the coprecipitation of oxides (such as iron or manganese oxides) or adsorption onto mineral surfaces. This appears to be the case at the study site. Assays have shown amounts of solid copper in the 1,000 to 3,000 ppm range in the vadose and saturated portions of the tailings, but generally below the zone of oxidation. The mean concentration of dissolved copper in the pore water of the vadose zone is 85 mg/L and in the saturated zone is 78 mg/L. Mean downgradient level of copper at well M5-4 is 0.08 mg/L, which is only slightly higher than the mean background level of 0.05 mg/L at well BKG-6.

Calcium and Magnesium

Calcium and magnesium are alkaline-earth metals. Anorthite from the tailings and calcium carbonate from the snail shells in the lake sediments below the tailings are the possible sources of calcium at the field study site. The behavior of calcium in sulfate-dominated systems is generally governed by the gypsum solubility product. Magnesium is similar to and tends to mimic the chemical behavior of calcium. Most magnesium minerals do not precipitate unless considerably supersaturated. The major source of magnesium in the impoundment is probably chlorite, common in propyllitized andesite.

Calcium and magnesium have comparable concentrations and behavior in the vadose zone, but in the saturated zone their behaviors diverge. That is, calcium concentrations do not increase appreciably in the saturated zone, whereas magnesium concentrations do. In the vadose zone, average pore water concentrations of calcium and magnesium are 350 and 270 mg/L, respectively. In the saturated zone, the averages are 474 and 1,800 mg/L, respectively. Calcium increases downgradient, but then decreases to 390 mg/L at well M5-4. Magnesium levels at well M5-4 attenuate only to 120 mg/L. Background levels of calcium and magnesium at well BKG-6 average 140 and 29 mg/L, respectively.

Potassium and Sodium

Potassium is probably derived from dissolution of potassic feldspars and sodium from the dissolution of the albite feldspars. Sodium is an ion of small radius and is strongly hydrated. Once sodium enters into solution, there are no dominant precipitation reactions that control its solubility (Hem, 1985). Potassium may be controlled by being incorporated into clay structures and adsorbed (Hem, 1985). Potassium concentrations are higher in the saturated zone than in the vadose zone, like the majority of other cations, but sodium concentrations are not. Mean concentrations of potassium and sodium in the vadose zone are 5.7 and 22 mg/L, respectively, and in the saturated zone are 47 mg/L and 29 mg/L, respectively. Downgradient at well M5-4, potassium attenuates to 4.3 mg/L, slightly above background concentrations of 2.3 mg/L at well BKG-6. Sodium concentrations increase downgradient to an average of 53 mg/L at well M5-4, about 2.5 times higher than the background level of 20 mg/L at well BKG-6.

Silicon

Silicon is often referred to as the dissolved oxide species silica (SiO_2) in natural waters, but its actual form is usually one of the more hydrated uncharged ions based on the tetrahedron form SiO_4^{4+} , such as silicic acid (H_4SiO_4) .

The average concentration of silicon in the vadose zone pore water is 60 mg/L and in the saturated zone is 30 mg/L. Silicon is the only dissolved constituent for which average concentrations are higher in the vadose zone. Silicon solubility at cool temperatures is generally controlled by the mineral referred to as amorphous silica (Hem, 1985) and may also be controlled by such aluminosilicate minerals as kaolinite and montmorillonite. Silicon concentrations in the two zones appear to differ in correlation to the different redox status, but the thermodynamics of silica suggest that the differing concentrations are not a result of acid dissolution. It is possible that the higher silicon concentration in the vadose zone results from the sparse vegetation; Drees and others (1989) note that production of organic complexes increases the dissolution rate of silica by complexing monosilicic acid. Drees and others also note that the dynamic changes in moisture content caused by wet-dry cycles may influence silica concentration more than other processes, such as dissolution-precipitation reactions. In downgradient well M5-4, the mean concentration is 15 mg/L, or nearly equal to the average background concentration at well BKG-6 of 14 mg/L.

Water Quality Below Tailings

To determine contaminant concentrations below the tailings, three additional wells were drilled in the vicinity of well P3. These wells, P3A, P3B, and P3C, were drilled to 6.5 m (about 30 cm below the tailings), 5.9 m (base of the tailings), and 7.1 m (about 90 cm below the tailings), respectively. Well P3 (drilled in 1987) was drilled to 9.1 m, about 3 m below the tailings. Average concentrations of metal ions in these wells are shown in table 11.

Fifty years after the tailings were deposited onto the silts, concentrations of every element determined (except barium) were lower in the pore water of the silts 30 to 90 cm below the tailings than in the pore water at the base of the tailings (table 11) and much lower than in the pore water in the core of the saturated tailings (table 9). This could mean that water with very low concentrations of measured constituents is flushing the porous silts and perhaps the base of the tailings. At the P3 cluster wells (P3, P3A, P3B, and P3C), the vertical component of gradient indicated a weak upward flow in the lacustrine sediments during the spring, a time of high groundwater recharge.

Another explanation for low metal concentrations in the silts below the tailings is that tailings pore water may not be seeping into the silts to any significant degree, but may flow horizontally as a result of lower hydraulic conductivity at the base of the tailings. If substantial horizontal flow does occur at the base of the tailings, then pore water from the tailings may eventually enter the gravels at the edges of the impoundment, bypassing the organic material and silts. The degree of mixing between tailings pore water and colluvial water is unknown.

Constituent	P3B	P3A	P3C	P3
Conductivity, µS/cm	3,448	2,456	1,630	1,788
Eh, mV	230	215	181	220
HCO ₁₋₃ , mg/L	473	674	574	553
рН	6.10	6.40	6.60	6.90
Element, mg/L:				
Al	1.25	0.57	0.33	0.30
В	2.60	0.69	0.56	0.30
Ba	0.04	0.07	0.08	0.09
Са	536.00	508.00	391.00	363.00
Cu	0.58	0.17	0.09	0.07
Fe	968.00	233.00	197.00	9.20
К	54.30	22.80	12.40	1.90
Mg	610.00	361.00	145.00	127.00
Mn	74.00	22.00	6.50	0.80
Na	65.00	38.00	25.00	38.00
Pb	0.21	0.11	0.10	0.06
S	1,887.00	893.00	504.00	354.00
Si	21.00	16.00	18.00	25.00
Zn	4.50	2.80	0.93	0.35

Table 11.--Average constituent concentrations below tailings

A third explanation for the low concentrations in the silts below the tailings is that the neutralizing capacity of the calcareous, carbonaceous silt could be inducing precipitation, which would decrease metal concentrations in the silt pore water.

Discussion and Summary of Water Quality Data

The following statements summarize the observed findings regarding the dissolved chemical constituents.

1. The vadose zone is more oxidizing (has higher Eh values) and is more acidic (has lower pH values) than the saturated zone.

2. Several dissolved constituents (sulfur, iron, manganese, lead, zinc, nickel, boron, cadmium, magnesium, and potassium) have higher average concentrations in the saturated tailings than in the vadose tailings. Several possible explanations exist. (a) Some redox species are more soluble under oxidizing conditions, and the oxidation products of easily dissolved minerals have been flushed from the vadose zone, while the presence of remaining sulfides continues to depress the pH; (b) the percentage of fines increases with depth (finer materials tend to have more surface area available for chemical interaction, and may, therefore, cause more dissolved materials to be in solution in the deeper saturated zone); (c) different mineral assemblages may have been mined over time, in which case the corresponding wastes would have depthdependent changes in properties; or (d) different milling procedures might have been employed at the mill over

time, leading to corresponding depth-dependent changes in tailings composition.

The first explanation, offered by Dubrovsky and others (1985), is also supported by the work of Blowes and Jambor (1990). The second explanation, regarding the correlation to grain size, is plausible. Goss and others (1973) demonstrated with radioactively tagged clays that particulate material is transported downward through the vadose zone during infiltration. The third and fourth explanations regarding changes in depth corresponding to changes in depositional history are also possible because of mining (and milling) mineralogically different zones in the ore body, accidental mill reagent (lime, soda ash, crsylic acid, etc.) overdoses, and longer drying-out periods (oxidation exposure) for some portions of the tailings.

3. Concentrations of sodium, calcium, copper, aluminum, and barium tend to be the same for each element throughout both zones. Sodium, calcium, and aluminum are generally not considered redox species; therefore, they would not be influenced differently by the two zones. Phase diagrams for copper and super-sulfate systems indicate that copper is in equilibrium as Cu^{2+} over the range of pH and Eh encountered in both zones. Barium generally has a very low solubility in natural waters.

4. Concentrations of silicon tend to be slightly higher in the vadose zone than in the two saturated zones. Because redox thermodynamics are not likely to control silicon solubility, the higher solubility in the vadose zone is likely to be the result of organic complexing from roots and the influence of wet-dry cycles. 5. Downgradient profiles of average hydrologic and chemical parameters at the field site are shown in figure 12. Groundwater quality dramatically improves in the gravel downgradient of the tailings. Aluminum, copper, iron, lead, silicon, zinc, and pH attenuate rapidly in the first 76 m downgradient from the tailings and reach background levels of 0.3, 0.5, 0.2, 0.03, 15, 0.05 mg/L and 7.0, respectively, at well M5, which lies 550 m from the tailings. Potassium, manganese, magnesium, and sulfate attenuate but do not reach background levels. Downgradient calcium levels remain at the same value as the tailings pore water, and sodium is near background levels in the tailings pore water but increases above background levels downgradient. Also at well M5, pH is up to background levels of 7.0. 6. Two key components, calcium and sulfate, were four times more concentrated downgradient than background. The presence of a significant concentration of sulfate in the tailings coupled with the solubilities of secondary sulfate minerals are major influences on the concentrations of many contaminants. Also, the presence of a significant calcium source in the sediments below the tailings has a major impact on attenuation. Iron is one of the major constituents released during oxidation of sulfide tailings. Downgradient attenuation of iron, as well as other trace metals, such as copper, lead, and zinc, is extremely rapid upon leaving the tailings.

CONCLUSIONS

This report addresses acid production, leaching, transport, and attenuation of dissolved metals at an oxidized, acid-producing tailings impoundment in north-central Washington. This report describes the monitoring, physical properties, and on-site data collection necessary to characterize the site and to determine existing hydrological, physical, and geological conditions. Related reports present multivariate statistical analyses of vadose and saturated pore waters, and hydrological and hydrogeochemical investigations and modeling, (Lambeth, 1992; Williams, 1992). Forty-two monitoring wells were installed upgradient, within, below, and downgradient of the tailings impoundment. During a period of 3 years, pore water samples were taken approximately every 5 weeks and analyzed for dissolved constituents, pH, Eh, conductivity, temperature, DO, and alkalinity. In addition, pore gas samples were collected and water table elevation, tailings temperature, moisture and density, hydraulic conductivity, and groundwater flow velocity measurements were made. Solid samples were collected for mineralogic and chemical analyses and for determination of physical properties.

In the 50 years since deposition of milled tailings ended at the study site, acidic conditions have developed, resulting in high concentrations of dissolved heavy metals and other contaminants in the tailings pore water. Physical observation of the solid samples collected during monitoring well drilling show zones, from top to bottom, of unsaturated tailings, saturated tailings, lake sediments grading into volcanic silts, colluvial gravels, and fractured bedrock. The lake sediments immediately below the tailings consist of 30 to 60 cm of organic-rich material intermixed with silts containing large amounts of snail shells. These below-tailings sediments are instrumental in the geochemical behavior of released tailings pore water. The vadose and saturated zones in the tailings and the saturated lake sediments and silts below the tailings were verified by measured differences in moisture content and density using a downhole neutron probe at eight locations in the tailings pile. Two of the neutron probe profiles showed layers of high moisture in the vadose zone, about 46 cm below the surface. A 61-cm sampling tube pushed through one such layer showed a 2.5- to 5-cm-thick hardpan in the center of the sample. The tailings below the hardpan were much wetter and finer than the tailings above. The hardpan contained high concentrations of iron (from an acid-leaching test) and may reduce the water seepage velocity, alter the direction of flow, and possibly act as an oxidation barrier, slowing the pyrite oxidation process.

Groundwater is in contact with the tailings year around. Piezometric elevations in two multiple-completion wells indicate that groundwater from deeper fractured bedrock upwells into the sediments and possibly the tailings during part of the year. Water from the sediments probably flows into the fractured bedrock during other parts of the year. This water is supplemented by rain and snowmelt that filter through the vadose zone. The low slope of the phreatic surface (5.6×10^{-3}) , coupled with the relatively low hydraulic conductivity (10^{-5} cm/s) of the tailings material, results in extremely slow downgradient groundwater flow rates through the tailings and long residence times for mechanical and chemical weathering and reactivity. In addition, grain-size comparisons between vadose and saturated zone samples taken from well P3A showed eight

times more 0.01-mm-sized particles in the saturated zone than in the vadose zone. This may be correlated to the large amount of dissolved constituents in the saturated zone because finer materials have more surface area available for chemical reaction.

SEM analysis of the tailings base and sediments below the tailings indicate abundant barium sulfate (barite) in the deep tailings, with detectable amounts of K-feldspar, quartz, and iron oxide. In the organic-rich layer below the tailings, numerous framboidal spheroids composed of iron and sulfur and a mineral assumed to be pyrite were found intermixed with abundant radiolarian debris, alga cysts, and snail shell fragments. The snail shells showed only calcium on the EDS spectrum. Given this type of reducing environment, secondary base-metal sulfides such as chalcocite, covellite, digenite, or sphalerite were expected to exist as coatings on the framboids. However, no secondary base metals were observed with SEM in the organic-rich layer. An EDS spectrum of the silts below the organicrich layer showed silicon, aluminum, potassium, and calcium, some of the major elements in dacitic-to-rhyolitic glass from volcanic ash falls.

Chemical analyses of the tailings base and sediments below the tailings indicate that solid phase lead and copper are present in the base of the tailings, but not in the organic-rich layer below the tailings, and do not appear to be remobilizing below the tailings. At the base of the tailings, iron is bound primarily to sulfides and oxides, and in the organic-rich layer, iron is bound to oxides, sulfides, carbonates, and organic matter. In the silts below the organic-rich layer, iron and manganese are bound primarily to carbonates. Calcium and magnesium are very abundant in this zone, also in the carbonate form.

Long-term water quality monitoring at the field study site indicates that the vadose zone is more acidic than the saturated zone and appears to have been more aggressively chemically weathered than the saturated zone. Silicate and aluminosilicate dissolution is more advanced in the vadose zone than in the saturated zone. Because the water quality improves dramatically with depth below the tailings, the soluble contaminants in the tailings pore water are not penetrating the base of the tailings into the organic-rich layer and silts below to any great extent, but are probably being transported slowly downgradient through the tailings and are discharged near the southeast end of the tailings pile, where the colluvial gravels are in direct contact with the tailings. After the water leaves the impoundment, several processes aid in downgradient attenuation. These include hydrogeochemical reactions, dilution, advection, and dispersion. At a distance of 550 m downgradient from the impoundment, all measured dissolved constituents naturally attenuate to near-background concentrations except calcium, magnesium, manganese, sodium, and sulfur.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Gus Smith and the late Mrs. Smith and Mr. and Mrs. William White for allowing access across their property and for their help and hospitality during the field trips. Their cooperation has saved much time and effort, especially during the winter sampling trips. The authors would also like to thank Mr. James Melton, assistant fire office manager, (retired) and Mr. David Forsyth, roads foreman, of the U.S. Forest Service for loaning equipment and providing access to their shop. Their excellent cooperation was greatly appreciated. Finally, special thanks to the mine property owners for allowing the use of their waste disposal site for research.

REFERENCES

Alpers, C. N., and G. H. Brimhall. Paleohydrologic Evolution and Geochemical Dynamics of Cumulative Supergene Metal Enrichment at La Escondida, Atacama Desert, Northern Chile. Econ. Geol., v. 84, 1989, pp. 229-255.

Berner, R. A. Sedimentary Pyrite Formation. Am. J. Sci., v. 268, 1970, pp. 1-23.

Blowes, D. W., J. A. Cherry, and E. J. Reardon. The Hydrogeochemistry of Four Inactive Tailings Impoundments: Perspectives on Tailings Pore Water Evolution. Paper in Proceedings, 1987 National Symposium on Mining, Hydrology, Sedimentology and Reclamation (Univ. KY, Lexington, KY, Dec. 7-11, 1987). Univ, KY, 1987, pp. 253-261. Blowes, D. W., and J. L. Jambor. The Pore-Water Geochemistry and the Mineralogy of the Vadose Zone of Sulfide Tailings, Waite Amulet, Quebec, Canada. App. Geochem., v. 5, 1990, pp. 327-346.

Boorman, R. S., and D. M. Watson. Chemical Processes in Abandoned Sulphide Tailings Dumps and Environmental Implication for Northeastern New Brunswick. Can. Min. and Metall. Bull., v. 69, 1976, pp. 86-96.

Chanton, J. P., C. S. Martens, and M. B. Goldhaber. Biogeochemical Cycling in an Organic-Rich Coastal Marine Basin. 7. Sulfur Mass Balance, Oxygen Uptake and Sulfide Retention. Geochim. et Cosmochim. Acta, v. 51, 1987, pp. 1187-1199. Cherry, J. A., R. J. Blackport, N. Dubrovsky, R. W. Gillham, T. P. Lim, D. Murray, E. J. Reardon, and D. J. A. Smyth. Subsurface Hydrology and Geochemical Evolution of Inactive Pyrite Tailings in the Elliot Lake Uranium District, Canada. Paper in Uranium Mill Tailings Management: Proceedings of the Third Symposium (CO State Univ., Ft. Collins, CO, Nov. 24-25, 1980). Civil Eng. Dept., CO State Univ., 1980, pp. 353-385.

Cherry, J. A., F. M. M. Morel, J. V. Rouse, J. L. Schnoor, and M. G. Wolman. Hydrogeochemistry of Sulfide and Arsenic-Rich Tailings and Alluvium Along Whitewood Creek, South Dakota. Miner. and Energy Res., v. 29, No. 4, 1986, pp. 1-12; No. 5, pp. 1-16; No. 6, pp. 1-16.

Drees, L. R., L. P. Wilding, N. E. Smeck, and A. L. Senkayi. Silica in Soils: Quartz and Disordered Silica Polymorphs. Ch. 19 in Minerals in Soil Environments, ed. by J. B. Dixon and S. B. Weed. Soil Sci. Soc. Am., Book Series 1, 2nd ed., 1989, pp. 913-974.

Dubrovsky, N. M., J. A. Cherry, E. J. Reardon, and A. J. Vivyurka. Geochemical Evolution of Inactive Pyritic Tailings in the Elliot Lake Uranium District. Can. Geotech., v. 22, 1985, pp. 110-128.

Goldhaber, M. B., and I. R. Kaplan. Controls and Consequences of Sulfate Reduction Rates in Recent Marine Sediments. Ch. 2 in Acid Sulfate Weathering, ed. by J. A. Kittrick, D. S. Fanning, and L. R. Hossner. Spec. Publ. 10, Soil Sci. Soc. Am., 1982, pp. 19-36.

Goss, D. W., S. J. Smith, B. A. Stewart, and R. O. Jones. Fate of Suspended Sediment During Basin Recharge. Water Resour. Res., v. 9, 1973, pp. 668-675.

Hem, J. D. Geochemical Controls on Lead Concentrations in Stream Water and Sediments. Geochim. et Cosmochim. Acta, v. 40, 1976, pp. 599-609.

___. Study and Interpretation of Chemical Characteristics of Natural Water. U.S. Geol. Surv. Water-Supply Paper 2254, 3rd ed., 1985, 263 pp.

Klein, C., and C. S. Hurlbut, Jr. Manual of Mineralogy (after J. D. Dana). John Wiley & Sons, 20th ed., 1985, pp. 428-429.

Lambeth, R. H. Hydrogeochemical Characteristics of an Unconsolidated Aquifer Downgradient from an Oxidized, Sulfidic Mine Tailings Impoundment. M.S. Thesis, E. WA Univ., Cheney, WA, 1992, 140 pp.

Mok, W. M., and C. M. Wai. Simultaneous Extraction of Trivalent and Pentavalent Antimony and Arsenic Species in Natural Waters for Neutron Activation Analysis. Analyt. Chem., v. 59, 1987, pp. 233-236. Nordstrom, D. K. Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals. Ch. 3 in Acid Sulfate Weathering, ed. by J. A. Kittrick, D. S. Fanning, and L. R. Hossner. Spec. Publ. 10, Soil Sci. Soc. Am., 1982, pp. 37-56.

Nordstrom, D. K., and J. W. Ball. The Geochemical Behavior of Aluminum in Acidified Surface Waters. Science, v. 232, 1986, pp. 54-56.

Petsonk, A. M. BAT Groundwater Monitoring System Piezometer Installation Guide. BAT Envitech, Inc., Long Beach, CA, 1985, 20 pp.

____. The BAT Method of In Situ Measurement of Hydraulic Conductivity in Saturated Soils. Thesis in Hydrogeology, Uppsala Univ., Uppsala, Sweden, 1984, 54 pp.

Stewart, B. M., R. H. Lambeth, and B. C. Williams. Effects of Pyritic Tailings in an Abandoned Impoundment on Downgradient Ground Water Quality. Ch. 16 in Mining and Mineral Processing Wastes: Proceedings of the Western Regional Symposium on Mining and Mineral Processing Wastes, ed. by F. M. Doyle (Berkeley, CA, May 30-June 1, 1990). SME, Littleton, CO, 1990, pp. 133-142.

Taylor, B. E., M. C. Wheeler, and D. K. Nordstrom. Stable Isotope Geochemistry of Acid Mine Drainage: Experimental Oxidation of Pyrite. Geochim. et Cosmochim. Acta, v. 48, 1984, pp. 2669-2678.

Taylor, J. K. Statistical Techniques for Data Analysis. Lewis Publ., Chelsea, MI, 1990, pp. 87-92, 169.

U.S. Bureau of Reclamation (Denver, CO). Unified Soil Classification System. 1963, 26 pp.

U.S. Environmental Protection Agency. National Oil and Hazardous Substance Pollution Contingency Plan. Proposed rule. 53 Federal Register 51394, 1988.

Washington State Department of Ecology. Water Well Construction Act of 1971, Minimum Standards for Construction and Maintenance of Wells. WAC ch. 173-160. Reprinted May 1988, 61 pp.

Williams, B. C. Multivariate Statistical Analysis of Vadose and Saturated Zone Pore Waters of Sulfidic Mine Waste Tailings. Ch. 10 in Emerging Process Technologies for a Cleaner Environment, ed. by S. Chander. Soc. Min. Eng., 1992, pp. 63-70.

Wood, B. D., C. K. Keller, and D. L. Johnstone. In Situ Measurement of Microbial Activity and Controls on Microbial CO₂ Production in the Unsaturated Zone. Water Resour. Res., v. 29, No. 3, 1993, pp. 647-559.

lider

1

Low-angle photograph of study site looking downgradient.

Cross section of tailings impoundment and stratigraphy below impoundment.

Plan view of research site and monitoring well locations.

Cross section of BAT sampler. A, Sample vial; B, pressure transducer.

ł

Gauge pressure data from vadose zone. A, B1-4c; B, B2-4c; C, B1-7c, D, B2-8c.

Head data from saturated zone sampling locations plotted against time.

Oxygen and carbon dioxide content at vadose zone sampling locations plotted against time.

Grain-size distribution of samples from vadose zone (solid line) and saturated zone (dotted line), well P3A.

Figure 9

Moisture and density profiles in vadose zone, well B2-4c.

Grain-size distribution in samples above and below hardpan. The samples were collected in a zone extending from the surface to a depth of 76 cm near well B2-2c.

Moisture and density profiles in tailings and silts below tailings near well P3. Changes between the two units are noticeable at 5.8 m.

Changes in elevation, pH, Eh, and metal concentrations in shallow groundwater from background (-400 m), through the tailings (0 m), to three locations downgradient (76, 335, and 550 m).

Ľ

Changes in elevation, pH, Eh, and metal concentrations in shallow groundwater from background (-400 m), through the tailings (0 m), to three locations downgradient (76, 335, and 550 m).

Changes in elevation, pH, Eh, and metal concentrations in shallow groundwater from background (-400 m), through the tailings (0 m), to three locations downgradient (76, 335, and 550 m).

:4

;

The second se

APPENDIX A.—WELL COMPLETION REPORTS FOR P, M, AND BKG WELLS

AS-BUILT WELL DATA FORMATION DESCRIPTION Protective Completed Maturelly developed wel prd well cover W lock cap was allowed to collapse 1 Concret around the Referenced Section KALON G.L. 0-2'3" Light Brium Sandy tailings well cusing is l''puc with a 2' slotted section bouton seal 2'3"-3' Sand layer (factory slots). well was developed 3'- 14'10" Grey Coarse Sondy tailings g"drill by over promping until woter become classified. Dedicated 3/8" tabing was installed in the hole 1'pvc 8' 14'10"- 15'6" Calcareous, Carbonaceous sitt Luyer Coarse well for sampling with peristablic pump. Bottom & casing is at about 96' from +0 penistaltic Fine tuilings 12' -156"-16' Gravel/Gray Sand AU. WALer 2'ren 1046 @ section 14.8161. 16'

PAGE

OF

ECY 050-12 (Rev. 11/89)

SCALE: 1" = 4

1

LOCATION: SE 14 Sec 18 Twn 33N R 22E

GROUND SURFACE ELEVATION: 1859. 8 About Son level. DEVELOPED:

PROJECT NAME: Mine Waste Mune gement
WELL IDENTIFICATION NO. P2
DRILLING METHOD: Hollow Stem Auger
DRILLER:
FIRM: U.S.BM
SIGNATURE:
CONSULTING FIRM:

START CARD NO.

соинту: <u>ОКанодал</u> LOCATION:<u>SE 14 SE 14 Sec 18 Twn 73N R 22E</u> STREET ADDRESS OF WELL:

WATER LEVEL ELEVATION: GROUND SURFACE ELEVATION: 1859.2 Above Sealine INSTALLED: _10/2/87 DEVELOPED: _____

Ch. Physical production in the intervent of the intervent

ECY 050-12 (Rev. 11/89)

۱.

1

ľ.

PROJECT NAME: Mine Woste Manugement
PROJECT NAME: Mine Weste Manuschan
WELL IDENTIFICATION NO. 23
DRILLING METHOD: Hollow Stem Auger
DRILLER:
FIRM: U.S.B.M.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

COUNTY: OKANOGAN LOCATION: <u>SE 14</u> <u>SE 14</u> Sec <u>18</u> TWN <u>33</u>N R <u>22</u> E STREET ADDRESS OF WELL:

AS-BUILT	WELL DATA	FORMATION DESCRIPTION
protective CAP w/lock pvc CAP	Naturally completed well in which the formation	
L. Concrete I Pour . A provi	was allowed to collapse around the casing as	0-3'- Oxidized rust colored tailings with 2"white loyer in center.
5' 1 b) b) b	hole stayed open above the water level were bockfilled with augered	3-5'-took shelling tube sample (No description)
10' TAU, WATER	Well cusing is I'puc with a 2' slotted Section	5'-10'- roddish Gray tailings 8'-10'- took Shelby tube Somple (No description)
$1 \frac{1}{12.9} \frac{1}{6l}$	(.01" factory slots) Well was developed by over pumping until water herame dalified.	10-15' - Grieg liquidytailings
	Was installed in the well for sampling with	15-20'- Grey to Brown liquidy tailings. last 1" calcareau carbono ceous silt
20 +	peristaltic pump.	20'-201/2 - Calcareous /carbona ceous Silt Layor
25' + 2'perf.		201/2'-25'- Mix of grey silt and carbona decles silt with Shell's + roots 25-30' Same as last with
30' 5'	PAGEOF	25-30' Same as last with bottom 2' containing pravel. HS order. Odor.

ECY 050-12 (Rev. 11/89)

Hydrogeologic Phenomena - PROJECTNAME: Mino Woste Management	
PROJECT NAME: MEND Waste Management	
WELL IDENTIFICATION NO. P3A U	
DRILLING METHOD: Hollow Skm Auger	_
DRILLER:	
FIRM: U.S.B.M.	
SIGNATURE:	
CONSULTING FIRM:	
REPRESENTATIVE:	

START CARD NO.

COUNTY: <u>0 Kanogen</u> LOCATION: <u>55 14 5E 14 Sec 18</u> Twn <u>33N</u> R <u>22E</u> STREET ADDRESS OF WELL:

WATER LEVEL ELEVATION: _____

GROUND SURFACE ELEVATION: No e lou, taken, INSTALLED: 5/1/90 DEVELOPED: _____

AS-BU/LT	WELL DATA	FORMATION DESCRIPTION
G.L Protective CAP Silvek PVC CAP PVC CAP PVC CAP See See See See See See See Se	Maturally completed well in which the formation was allowed to collapse around the Casing as angers were being removed. Sections when hale stayed open above the weth build were backfilled with angered metariol. Well cusing is 2"pvc with 5' slotted section (0.22" factory slots) + + 6" sectionent catchen. well was developed by	0-5' Oxidized tailings with 2" quarty in middle. Lost 4" grey colored tailings 5'-8' Course to fine tailings 8'-10' shelby take (No description) 10'-13' grey, slimey tailings. 13'-16' brown to grey Slimey tailings (brown 4 grey knser) 16'-18'9" brown slimeay tailings w/ a reddish angidized ? you (3"). 18'9"-20'2" al careous/ Carbonaceous (orgonic) Ioyar CNO gravel) 20'2"-22' - Carbonaceous shaleo to grey/brown silty day,
ECY 050-12 (Rev. 11/89)		

t

ļ.

d,

ŀ

a set of the set of th

Hy trogeologic Phenomena -
Hy trogeologic Phenomena - PROJECT NAME: Min Waste Munagement
WELL IDENTIFICATION NO. P3B
DRILLING METHOD: Hollow Stem Auger
DRILLER:
FIRM: U.S.B.M.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

START CARD NO.

COUNTY: OKanogan LOCATION: SE 14 SE 14 Sec 18 Twn 33N R 22E STREET ADDRESS OF WELL:

WATER LEVEL ELEVATION: ______ GROUND SURFACE ELEVATION: No. elev. falon_____ INSTALLED: _______ DEVELOPED: _____

AS-BUILT	WELL DATA	FORMATION DESCRIPTION
AS-BUILT Concets Protective Cop w//oek Appun G.L.	SAME as	No formation description No formation description for this hole. Did not take split spoon or shelly tube somples.
20 - Schiment Catchau		
25 -		
SCALE: 1"= 5'	PAGE OF	
ECY 050-12 (Rev. 11/89)		_

Hydrogeologic Phonomena -
Hy Lugeblogic Phonomena - PROJECT NAME: Mine Wuste Monagement
WELL IDENTIFICATION NO. $P3C$
DRILLING METHOD: Hollow Sten Auger
ل DRILLER:
FIRM: U.S.B. M.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

START CARD NO.	START CARD NO.		
COUNTY: <u>0 Kanogan</u> LOCATION: <u>5E 14</u> <u>5E 14</u> Sec <u>18</u> Twn <u>33N</u> STREET ADDRESS OF WELL:	R <u>22</u> E		
WATER LEVEL ELEVATION:			

	ACE ELEVATION:	:	
INSTALLED:	5/1/90		
DEVELOPED:			

	AS-BUILT	WELL DATA	FORMATION DESCRIPTION
5.6.	Protectione CAPUILock Apron Puilock CAPUILock CAPUILock CAP	SAME AS P3A	0-15' no description
6	stide ill shole		15-18 grey/brown to reddish! brown slimey tailings. 18'-19' oxidized slimey tailings.
0	Au Water Level e 12.9'G.L		19'-191/2' Conbonaceous luyery 191/2'-21' Conbonaceous shales to grey silt
5 -			21-23' alternating Silt & + Curbon accous (ovg.) & uyons ! (6")
20	I Couring		23'-24' grey 51H.
25 -			
	SCALE: 1" =	PAGE OF	<u>_</u>
	ECY 050-12 (Rev. 11/89)		_

e)

Hydro geologic Phonomena -
Hydro geologic Phonomena - PROJECT NAME: Mine Waste Management
WELL IDENTIFICATION NO
DRILLING METHOD: Hollow STEM Quge L
DRILLER:
FIRM: U.S.B.M.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

3

1

START CARD NO.

COUNTY: OKanogan

LOCATION: SE 14 Sec 18 Twn 33N R 22E STREET ADDRESS OF WELL:

WATER LEVEL ELEVATION: _________ GROUND SURFACE ELEVATION: __________ INSTALLED: _________ DEVELOPED: _______

6.1. 6'T 6'T 6'T 6'T 6'T 6'T 6'T 6'T	AS-BUILT	WELL DATA	FORMATION DESCRIPTION
	C.L. $C.L.$	Well in which the formation was allowed to collapse around to collapse around the casing as augers were being removed, Sections when hole stays Open above the worter love Der above the worter love were backfilled with augend Metarial. Well casing is 1" pvc with 2' Slotted section (0-01" foctory slots) well worter be rome classified. Dedicated 3/g" tubing was installed for Sampling with pristiltic	0-5' Iron stained brown Sandy tailings with 6" white (gtz?) layer in middle. 5'-10' SAME as last with buttom I'gray colored swith (No Iron stain) 10'-15' grey/brown coursetailings (No fines or slimos) 15'-18/2' grey/brown Sat Guick" tails.

ECY 050-12 (Rev. 11/89)

Hydro jcologic Phenomena - PROJECT NAME: Min Woute Monagement
PROJECT NAME: MIN Woste Monagement
WELL IDENTIFICATION NO. P5
DRILLING METHOD: Hollow Stru Auger
DBILLER:
FIRM: U.S.B.M
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

START CARD NO.

COUNTY: <u>OKanogan</u> LOCATION:<u>SE 14</u> <u>SE</u> 14 Sec <u>18</u> Twn <u>37N</u> R <u>22E</u> STREET ADDRESS OF WELL: _____

WATER LEVEL ELEVATION: _________ GROUND SURFACE ELEVATION: __________ INSTALLED: _________ DEVELOPED: _______

AS-BUILT	WELL DATA	FORMATION DESCRIPTION
5' - 10' -	Noturally completed well in which the formation was allowed to collapse around the Casing as anyor were being removed. Sections where hole stayed open above the wall with angered material, well cosing is 1"pvc with 2's lotted section (0.01" factory slots) well was developed by Over pumping until with became classified. Dedicated 3/3" fubing with peristellic pump.	0-5 Fron Stained, buff Colored Medium five Sonchy tailings w 6"white Sond layer in Middle. 5-7 Iron Stained modium Sandy tailings 7-71/2' brown/buff colored "mid" 7/2'-15' med grey colored Sondy Hickorys with buff tint. lest 1' finen 4 browner. 15'-18/2' prod grey to brown Sandy theilings
SCALE: 1" =	PAGE	

...

; '

Hydrogiologic Phonomena-PROJECT NAME: Mine Woste Management Well IDENTIFICATION NO. Ple DRILLING METHOD: Hollow Stem Auger 1 DRILLER:_ U.S.B.M. FIRM: SIGNATURE: CONSULTING FIRM:_____ REPRESENTATIVE: _____

START CARD NO.

COUNTY: <u>OKanojan</u> LOCATION: <u>SE 14</u> Sec <u>18</u> Twn <u>33N</u> R <u>22 E</u> STREET ADDRESS OF WELL: _____

WATER LEVEL ELEVATION:

GROUND SURFACE ELEVATION: _1857.4 a bis S.L. INSTALLED: _10/7/87 DEVELOPED: _____

____ DEVELOPED: ____

_	AS-BUILT	WELL DATA	FORMATION DESCRIPTION
15'- 20'-	Protective Courcub Aprior Protective Cap Protective Cap Protective Cap Protective Cap Protective Cap Protective Cap Protective Cap Protective Cap State	the cosing as augus were being remoted. Sections where hole stonged open above the water level were backfulled of augured material well casing is 1"pvc with 2' slotted section (0.01" factory slots)	0-21/2' foundary buff Colored tailings. 21/2'-41/2' loss Fe-Stain 41/2'-5' loss Fe-Stain ut trole of black colored material. 5'-6' Med Sandytails w/ Fe-Stain 6'-101/2' Fine grey slime tailings w/ no Fe-Stain. 101/2-171/2 grey slime tailings 171/2-19'-grey /brown slime tailings. 19'-191/2' lake sediments
E	ECY 050-12 (Rev. 11/89)		1

Hydrogiologic Phenomena -
PROJECT NAME: Mile Weste Management
WELL IDENTIFICATION NO. 11 (7,41, 28)
WELL IDENTIFICATION NO. <u>M1 1 (791, 28)</u> DRILLING METHOD: <u>GIR Rotary with Down hole harmon</u>
DRILLER:
FIRM: U.S.D.M.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE

START CARD NO.

COUNTY: OKan og an. LOCATION: NE 14 NE 14 Sec. A Twn 33N R 22E STREET ADDRESS OF WELL:

C White Cop 10 10 10 10 10 10 10 10 10 10 10 10 10 1	AS-BUILT	WELL DATA	FORMATION DESCRIPTION
	C 1/4/PV	well in which three thy pvc wear placed in the Some hole at various levels (7', 11'+28'). The puloyated Section is 2'bins and 2"0.0. with .02"fectory slots. A temporen surface rusing was placed through the grevels 4 then showed after the PVC was installed. decliented %" the bing was placed in each well for Sampling with possibilite pump. Wells were completed with by Surging with a Surg. block	0-6' - Coarse angular Colluvial moterial, Cobbles are up to one foot and on all gray or green andesite, Matrix is fine sond 4 red- brown silt. <u>6'-21'</u> Sub angular to sub- nounded medium to pre-signed gravel and sand with large, random andes, to cobbles, matrix contains some gray- green silt, Gravel is domin- antly gray or green andesite, but grearly its also common. <u>Fair aguife</u> . <u>21'-23'</u> possible weathered andes, to bedrock

Ĩ

Hydrogeologic phonomena -
PROJECT NAME: Mine Woste Management
WELL IDENTIFICATION NO. $M Z (13, 20, 47)$
DRILLING METHOD: AIR Potery w/ Down hole HAmmer
DBILLER
FIRM: U.S.BM.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

START CARD NO. _____ COUNTY: OKonogo---LOCATION: NE 14 NE 14 Sec 19 Twn³3N R 22E STREET ADDRESS OF WELL: _____

AS-6	ÐUILT	WELL DATA		FORMATION DESCRIPTION
Concute Atron Atron $Atron Atron Atro$	- Sand - Sand - Sand.	SAME as MI were placed at og 13', 20' + 41		8-10' Coarse, angular Collouid muterial. Cobbles and one to two feet of andesite. Materix is angular asdesite, fire sand, t Add-brown Silt 10'-19' Coarse Sand& gravel. 10'-19' Coarse Sand& gravel. 10'-19' Coarse Sand& gravel. 10chos are rounded graven endisite; very minor gray- green silt. Much water & ground turns badly 19'-27' Very coarse grovel. One fout bouldars one purple state on green andosite, Maturix is modium to coarse, Sub rounded to rounded green andesite. 27'-35' Medium to coarse up to 12'' gravel & Sand - Gravel is rounded purple slots or black to green andosite. Runs badly 35'-40'2' nucdium gravel (2''''')'' and Sand - Gravel is rounded andesite and metosrdiments. Runs bedly; very poor returns i
SCALE: 1" = _ / 0'		PAGE	_OF	_

ECY 050-12 (Rev. 11/89)

Hentrogeologic phonomena-
PROJECT NAME: Mile Wust Monoyement
WELL IDENTIFICATION NO. M. 3 (16, 92) DRILLING METHOD: AIR R. Kry W/ Down Hile Hamme
DRILLING METHOD: AIR Roberg w/ Down Hale Homme
DRILLER:
FIRM: USBM
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

START CARD NO.

COUNTY: 0 Kanogon LOCATION: NOVA NUV 14 Sec 20 Twn 33N R 22E STREET ADDRESS OF WELL:

WATER LEVEL ELEVATION: __ GROUND SURFACE ELEVATION: _____ INSTALLED: ____//4/87 DEVELOPED:

AS-BUILT	WELL DATA	FORMATION DESCRIPTION
$10 \frac{1/4}{15/64}$ $10 \frac{1}{5/64}$ $10 \frac{1}{5/64}$ $12 \frac{1}{5}$ $12 \frac{1}{5}$ $10 \frac{1}{5}$ $12 \frac{1}{5}$ $10 \frac{1}{5}$ 15.5^{11} 15.5^{11	Some as MI, except only two puc were installed at depths of 16' + 32',	0-7' Coarse Collewium of green andesite with a bundant routs. Boulder ore up to one lout Matrix is small angula colluvium with rod-buin silt 7'-12' Coarse angular andsite colluvium admixed with rounded gravel matrix - some sand. 12'-13' Crey - green fine sand # silt. 13'-23' Rounded 1/4"-1/2" pra gravel of andesite, meta sediment and quart, with some sond. Rondown Blocky cobbles (cilluvium?) Gravel Content the coarse downword. 23'-331/2' Angular to Subangular pra gravel with coarse randoms boulders and cobbles, Inkisected a two foot andesite houlder at 28'.
SCALE: 1" = <u>/0</u> ECY 050-12 (Rev. 11/89)	PAGEOF	

46

Hydrogeologic phenomena -
PROJECT NAME: Mino Wask Moneyoment
WELL IDENTIFICATION NO. $M14(17, 24, 32)$
DRILLING METHOD: Air Rotary W/ Downhile Hannesk
/ / / / / / / / / / / / / / / / / / /
FIRM: U.S. B.M
SIGNATURE:
CONSULTING FIRM: #
REPRESENTATIVE:

START CARD NO		
COUNTY: OKanogan		
LOCATION: <u>AND</u> 14 AND 14 Sec 20 Twn <u>33N</u> STREET ADDRESS OF WELL:	R <u>22 </u> 5	

WATER LEVEL ELEVATION: _____ GROUND SURFACE ELEVATION: ____ INSTALLED: _____7/15/87 DEVELOPED: _____

AS-BUILT	WELL DATA	FORMATION DESCRIPTION
Concrete protection Cap aprentiation of the second secon	were placed at depths "of 17', 24' # 32'.	0-4' fill 4'-6' old tailings 6'-11' low oneign stream and sold posits - brown give son d and silt with minor gravel traces. 11'-20' Rounded pea gravel of traces. 11'-20' Rounded pea gravel of andesite and guards with high brown ish silt and fine send content 20'-26' subrounded to subangular pea gravel with high greenish dlay/silt content, buen two fect may be weathered belocks 26'-32' Grey andesite porphary brokneck
	PAGEOF	

Hydrogrologic Phenomena -
PROJECT NAME: Mino Waste Management
WELL IDENTIFICATION NO. M5 (13, 45, 175)
WELL IDENTIFICATION NO. M5 (13, 75, 175) DRILLING METHOD: DI Noct Clir Rotary
DRILLER:
FIRM: (1.5.3.M.,
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

COUNTY: <u>6Konogan</u> LOCATION: <u>NW14</u> <u>NW14</u> Seo <u>20</u> Twn <u>33N</u> R <u>22E</u> STREET ADDRESS OF WELL: _____

START CARD NO.

	AS-BUILT	WELL DATA	FORMATION DESCRIPTION
-	Hokedive Cup hokedive Cup bollock (not to sendo)	This is a multiple implied well in which two 14"	0-2' fill (Top Soil) 2'-6' Clayey, organic luden Str. dop.
0 -	11/4 procession	+ one l'puc wore eplaced in the some hole at levels of 13,75'+175!	6-13' silty, pra-to-medium gravel rounded to subrounded
50 -	Islotted Constant - Banton Section - 68800 - 6880 21 Long - 68800 - 6880 - 1"A	the 1'4" puc have 2'	or andosite bould us u/ Minne gravel.
	k mark	which one 2"00 + have .02" fecting 5 lots. The 1" pre also has a 2' I ma perforted Section	21'-29' Hord, Clark grey Endesiter W/SI. 29'-100' Alternating Hord to
100 -	1 6.55" 1 6.55"	but with . of factory slots. A tempory surfaces coping	med soft to soft yone of donk gray and site, with 1-5' product your throughout - Water at
150 -	Sand South Sand Sand Sand Sand Jock	was driven through the gravels & then removed yten the PVC was installed Dedicated 3/9" to bing	100'-116' Hand grey andosite or disrite
•		Was installed in MS-13 dm5-75 for sempling with peristaltic pump. A dedicated	116-169' Soften grey Endeste w/ some guarly fracs. Became darke 2 160'
200 -	<u>Au</u> . Water lovel M5(13)=5.18'6L M5(75)=1.0'6L	pump was placed in MS-175 to sampling with a Well	169'-177' porture yours in dark grey andesite
י ר ו	MS (175)= 13.6'GL	Wizerd system. Wells were completed by surging with a slurge block & gin	
י י י	SCALE: 1"=50'	Sloving. blowing. PAGE_1_OF_1	
	ECY 050-12 (Rev. 11/89)	·····	_

1 11 11 11 12 12

!

Ì.

,

•

- - -

PROJECT NAME: Mino Wash Menogenent
PROJECT NAME: Mino Was & Menogenent
WELL IDENTIFICATION NO. BKG (21, 66, 142) DRILLING METHOD: Direct Giv. Rotory
DRILLING METHOD: Direct Gir Rotory
DRILLER:
FIRM: US.B.M.
SIGNATURE:
CONSULTING FIRM:
REPRESENTATIVE:

START CARD NO.

COUNTY: <u>OKanogan</u> LOCATION:<u>JE 14 <u>56</u> 14 Sec <u>18</u> Twn <u>33N</u> R <u>22 E</u> STREET ADDRESS OF WELL: _____</u>

WATER LEVEL ELEVATION: _____ GROUND SURFACE ELEVATION: ____

INSTALLED: __/0/20/87____ DEVELOPED: _____

_	AS-BUILT	WELL DATA	FORMATION DESCRIPTION
0 -	AS-BUILT Protective Cup Protective Cup ULOCK Proon Protective Cup ULOCK Proon Protective Cup Protective Cup Protecti	This is a multiple completed well in which three 11/4" puc ven placed in the same hole at levels of 21', 66'4 142'. The 11'4" puc	0-2' dirt + roots (72psoil) 2'-20' Brown silty pra-to-med, 5120 grovel (nounded to sub round), some sub-angula, May be mixture galluvial + Collevial material. Wet & 17' 20-28' as last but largen
50 -	sloked sections 2'long. pock	d have . 02" factory slots. A tempory surface Casing was driven through the	gravels Typically upward T gravel seguence ?? 28-42' Bodrock of Silicified!
100 -	b.55" Cand	grevels & then removed often the pre was installed. Wells were completed by sunging with a singe black & din blowing.	andesite, Grey-green hund, 1 42-54' she Henrel to hoved grey! green andesite
/57 -		D-clicuted of turning was installed in BKG-21 to sompling with a pristaltic	porphyry with intermittent practime yones (1-3')
200 -	$\frac{A_{0}}{B_{KG}} = 21 \approx 14.4'$ $B_{KG} = 21 \approx 14.4'$ $B_{KG} = 66 \approx 13.6'$	Wind system.	green and Esite W/ frace B Silica in Fracs. True pyrite. 122-132 Hard dk green
	BKG-142 ~ 13.7'		andesite Vein nock. 32-144" as last bid fractional 4-easy ducking andesite w/ 44-157 prod grey andesite w/ abundant Si, lot z wotan
1	ECY 050-12 (Rev. 11/89)		

APPENDIX BWATER QUALITY DATA FROM SAMPLING TRIPS BETWEEN 1988 AND 1991				
Cd (mg/l)		0.000 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.00000 0.000000	0.014 0.003 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	
Ca (mg/l)		88866666666666666666666666666666666666	ϗ ͼ ϗ ϙ ϭ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ ͼ	
Ba (mg/l)		ND 0.017 0.017 0.017 0.017 0.028 0.002 0.003 0.003 0.0270 0.0270 0.0270 0000000000	0.015 0.080 0.000 0.000 0.043 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.029 0.020 0.029 0.0200000000	
B (mg/l)		ND 0.130 0.177 0.177 0.177 0.173 0.177 0.173 0.173 0.177 0.173 0.173 0.177 0.173 0.173 0.173 0.175 0.176 0.173 0.175 0.173 0.177 0.173 0.173 0.177 0.173 0.173 0.177 0.173 0.173 0.173 0.177 0.173 0.173 0.173 0.173 0.177 0.173 0.173 0.177 0.177 0.173 0.173 0.177 0.173 0.173 0.177 0.173 0.133 0.139 0.130 0.139 0.1300 0.130000000000	4.313 4.376 4.376 4.573 4.573 4.573 4.573 8.561 8.140 8.140 8.140 8.140 8.140 8.140 8.140 8.210 9.200	
Al (mg/l)		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.08 0.21 0.20 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.25 1.89 0.00 0.25 1.89 0.00 0.25 1.89 0.00 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.20	
HCO3 (mg/l)		N N N N N N N N N N N N N N N N N N N	<u>999999999999999999</u> 9	
Neg head (m)				
Pz El (m)		562.835 563.283 563.283 563.283 563.328 563.246 563.233 563.372 562.519 562.515 562.515 562.515 562.515 562.515 562.515 562.213 562.215 562.297 562.2975 563.247 562.975 563.247 562.975 563.570 562.975 563.571 562.975 563.571 562.975 563.571 563.571 562.975 563.571 563.571 563.571 563.571	563.530 563.533 563.533 563.225 562.747 562.747 562.732 562.63 562.63 563.634 563.634 563.634 563.634 563.634	
VLD (m)		5.023 5.252 5.252 5.254 4.556 5.288 5.288 5.288 5.288 5.288 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.233 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.231 5.238 5.231 5.231 5.231 5.231 5.231 5.231 5.232 5.231 5.231 5.231 5.232 5.231 5.231 5.231 5.232 5.231 5.231 5.231 5.232 5.231 5.232 5.231 5.232 5.231 5.232 5.231 5.232	4.328 4.325 4.833 4.828 5.112 5.112 5.112 5.125 5.127 4.176 4.176 4.148 4.176 4.148 4.255 4.255 4.855	
Diss O2 (ppm)		N N N N N A 4 4 4 4 0 4 4 0 4 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 N 0 0 N 0 0 N 0 0 0 0	
Eh f(mV,Temp)	wells	UNUNE 222 222 222 222 222 222 222 222 222 2	285 286 286 286 286 286 286 286 286 286 286	
Fld. Cond (uS/cm) f	Background and downgradient wells	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	
Hd	id and do		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Water Temp (C)	Backgroun	8 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
Date Sampled		02/08/88 03/14/88 05/103/88 05/01/88 05/02/88 05/20/88 05/20/88 05/20/88 05/22/88 01/103/89 01/103/89 01/103/89 05/22/89 04/10/89 05/22/89	05/30/88 06/20/88 08/22/88 09/19/88 10/17/88 11/11/18 01/09/89 03/06/89 03/06/89 03/06/89 03/06/89 03/06/89 03/05/89 06/27/89 06/27/89	
Well ID		88666 88666 88666 886666 886666 886666 8866666 8866666 8866666 8866666 88666666	886.2 866.2 866.2 866.2 886.2	

• •

ł

ŧ

1

.

Cd (mg/l)	0.00 000.0 0.000.0	0.018 0.042 0.042 0.026 0.026 0.026 0.026 0.020	0.005 0.002 0.00000000
Ca (mg/l)	4 4 40 4 7 4 1	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	883 890 874 870 870 870 870 870 870 870 870 870 870
Ba (mg/l)	0.054 0.064 0.034	ND 0.029 0.000 0.000 0.000 0.029 0.029 0.029 0.029 0.0250 0.00000 0.00000 0.00000 0.000000	0.052 0.052 0.0140 0.026 0.026 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
B (I\gm)	3.420 4.400 4.010	ND 3.900 5.900 5.900 5.900 5.616 5.616 5.616 5.616 5.155 5.116 5.620 5.620 5.620 5.620 8.440 8.440 8.440 8.7728 5.620 5.620 3.770 8.440 5.620 5.620 5.728 5.616 5.728 5.770 5.728 5.770 5.728 5.770 5.728 5.770 5.7728 5.770 5.7728 5.770 5.7728 5.7700 5.7700 5.7728 5.77000 5.77000 5.77000 5.77000 5.77000 5.770000000000	ND 1.200 0.5440 0.6852 0.6822 0.6822 0.6822 0.6822 0.6822 0.6822 0.6822 0.6822 0.6822 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.6822 0.000 0.000 0.6822 0.000 0.000 0.6822 0.000 0.000 0.6822 0.000 0.000 0.6822 0.000 0.000 0.000 0.6822 0.000 0.000 0.000 0.6822 0.000 0.000 0.000 0.000 0.000 0.6822 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
A (l/gm)	0.94 0.40 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
HCO3 (mg/l)	ND ND 284.5	8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	
Neg head (m)	O O O	<u> </u>	<u>8888888888888888888888888888888888888</u>
Pz El (m)	563.439 563.475 563.064	563.064 563.064 563.585 563.588 563.588 563.574 563.574 563.574 563.574 563.776 562.776 562.776 563.164 563.576 563.164 563.576 563.376 563.378 563.378 563.378 563.378	558.647 558.964 558.964 558.902 559.192 558.385 558.855 558.855 ND ND ND ND ND ND ND ND S58.184 559.077 558.876 558.876 558.876 558.876
MLO (iii)	4.420 4.383 4.795	4,795 4,701 4,273 4,273 4,273 4,273 4,273 5,045 5,142,	1.963 1.518 1.518 1.518 1.518 1.518 1.556 1.929 ND ND ND ND ND ND ND ND ND ND ND ND ND
Diss O2 (ppm)	ND ND 0.1- 0.6	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eh f(mV,Temp)	310 446 366	0 0 0 0 8 2 2 8 6 2 2 8 2 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 53 53 0 0 0 0 0 0 0 0 0 0 0 0 0
Fld. Cond (uS/cm)	1119 1383 1110	N N N N N N N N N N N N N N N N N N N	A A A A A A A A A A A A A A A A A A A
Hq Hq	7.1 8.1 7.5	8 7 7 7 7 7 8 7 7 7 7 7 7 7 8 7	8.0.0 9.1.0 9.
Water Temp (C)	10.7 14.2 8.6	8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.4.7.8 7.0.7 7.0.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
Date Sampled	04/30/90 06/18/90 03/11/91	02/08/88 03/14/88 03/14/88 04/104/88 05/09/88 05/30/88 05/20/88 07/25/88 07/25/88 07/25/88 07/25/88 07/12/88 01/109/89 03/17/88 01/109/89 05/05/89 04/10/89 05/27/89 00/27/89	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/20/88 05/20/88 06/22/88 03/19/88 10/17/88 11/14/88 03/19/89 03/19/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/10/89 03/17/89 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/88 06/05/89 00/05/89 00/05/89 00/05/89 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 00/05/80 000
Well ID	BKG_20 BKG_20 BKG_20	8 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Cd (mg/l)	0.020 0.000 0.000	 0.000 	000 000 00 00 00 00 00 00 00 00
Ca (mg/l)	599 430 602	340 340 230 230 230 230 230 231 235 235 235 235 235 235 235 235 235 235	461 396 ND
Ba (mg/l)	0.168 0.078 0.041	ND 0.070 0.030 0.025 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.023 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.0260 0.0260000000000	0.045 0.053 0.029 ND
B (mg/l)	0.250 0.250 0.250	ND 0.400 0.360 0.374 0.320 0.374 0.457 0.457 0.457 0.457 0.457 0.443 0.457 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.350 0.350 0.350 0.350 0.3860 0.3860 0.3860 0.3860 0.3860 0.3860 0.3860 0.3860 0.3860 0.3860	0.442 0.472 0.380 ND
Al (mg/l)	4.41 ? 1.05 3.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.42 0.14 ND
HCO3 (mg/l)	<u>0</u> 0 0 0	ANNONNANANANANANANANANANANANANANANANANA	
Neg head (m)		<u> </u>	
Pz El (m)	558.556 559.040 558.733	558.653 559.287 559.287 559.287 559.287 558.961 558.845 558.845 558.845 558.208 558.208 558.208 558.208 558.208 558.208 558.208 558.208 558.208 558.201 558.208 558.201 558.208 558.201 558.202 558.201 558.202 558.201 558.202 558.20	558.214 559.428 559.223 559.025
MTO (m)	2.054 1.570 1.878	1.357 1.524 1.524 1.524 1.524 1.524 1.526 1.526 1.526 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2765 2.2776 2.2776 2.2776 2.2776 2.2776 2.2776 2.2776 2.2776 2.2776 2.2776 2.2776 2.27765 2.277755 2.27775 2.277755 2.277755 2.277755 2.277755 2.277755 2.2777555 2.27775555555555	2.396 1.183 1.387 1.585
Diss O2 (ppm)	6.1 ND ND	N N N N N N N N N N N N N N N N N N N	4.0 0.6 ND 5
Eh f(mV,Temp)	038 ND ND ND	HANNA 86666666666666666666666666666666666	172 40 118 ND
Fld. Cond (uS/cm)	3007 ND ND	N N N N N N N N N N N N N N N N N N N	ND 660 2585 ND
Hd	3.5 5.5 6.0	てらてらってている。 ちょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょう	6.7 7.7 7.3 ND
Water Temp (C)	7.9 12.9 18.9	888870077666687888888 88887000766666767676 8888700086747076 800086747070 8000086747070 8000760076 80076070 80076070 80076070 80076070 80076070 80076070 8007607676 800760000000000	3.9 9.5 ND
Date Sampled	03/12/90 04/30/90 06/18/90	02/08/88 03/14/88 04/18/88 05/30/88 05/30/88 05/30/88 05/30/88 05/30/88 05/30/88 05/30/88 03/12/89 03/11/91 06/06/89 03/11/91 06/16/89 03/11/91 06/16/89 03/11/91 06/17/88 05/30/88 03/11/91 06/17/88 05/30/88 00/30/88 00/	03/06/89 04/10/89 05/22/89 06/06/89
Well ID	M1_2 M1_2 M1_2	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	M M M M M M M M M M M M M M M M M M M

ł

Cd (mg/l)	ND 0.010 0.010 0.010 0.000 0.000 0.000	0.000 0.002 0.002 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 0.005 0.002 0.001 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ca (mg/l)	ND 206 449 576	270 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	210 260 360 373 373 373 343 343 343 343 343 343 343
Ba (mg/l)	ND 0.054 0.034 0.068 0.068 0.137 0.094	ND 0.054 0.070 0.070 0.035 0.035 0.043 0.043 0.043 0.043 0.045 0.043 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.067 0.045	ND 0.082 0.045 0.059 0.078 0.078 0.042 0.042 0.033 0.043 0.033 0.045 0.045
B (I/gm)	ND 0.760 0.350 0.420 0.420 0.420 0.420 0.420 0.530	N 0.150 0.150 0.150 0.150 0.156 0.191 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.197 0.196 0.197 0.196 0.191 0.0191 0.0195 0.191 0.0100 0.0191 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.01200 0.0120000	ND 0.200 0.200 0.160 0.145 0.145 0.145 0.145 0.145 0.145 0.160 0.194 0.151 0.151 0.350
AI (mg/l)	ND 0.52 0.95 0.87 0.38 0.00	0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.02 0.02 0.03 0.03 0.03 0.03
HCO3 (mg/l)	ON O	88888888888888888888888888888888888888	222222222222222 222222222222222222222
Neg head (m)	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	22222222222222222222222222222222222222	22222222222222 2222222222222222222222
Pz El (m)	558.815 557.562 558.132 558.03 558.08 559.050 558.812 558.440	558.818 559.047 559.275 559.275 559.275 559.333 559.065 558.940 558.428 558.940 558.334 558.333 558.33	558.809 559.037 559.272 559.272 559.280 559.065 558.980 558.980 558.980 558.339 558.047 558.339 558.339 558.339 558.339 558.339
MTU (m)	1.795 3.048 2.478 2.003 1.561 1.798 2.170	2 554 2 2667 2 2667 2 2667 2 2667 2 2667 2 2669 3 3 2577 2 2669 2 2969 2 2967 2 2969 2 2967 2 2009 2 2000 2 20000 2 20000 2 2000	2.533 2.304 2.070 2.070 2.071 2.070 2.367 2.367 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.372 3.3777 3.3777 3.3777 3.3777 3.3777 3.3777 3.3777 3.3777 3.37777 3.37777 3.37777 3.377777 3.3777777 3.377777777
Diss O2 (ppm)	N 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
Eh f(mV,Temp)	N 134 117 145 145 145 145 1359 1359 1359 1359 1359 1359 1359 135	N N N N N N N N N N N N N N N N N N N	ND ND 371 377 377 377 377 377 377 377 377 377
Fld. Cond (uS/cm)	ND 2200 2721 ND 3096 3096	N N N N N N N N N N N N N N N N N N N	UN U
Hd	N 0.7 0.6 0.0 0.0 0.7	ω φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ	6.7 6.7 6.7 7.7 6.3 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.0 7.7 7.7
Water Temp (C)	N 8 2 8 2 9 2 9 2 1 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	888777766987777777777777777777777777777	00111140011101011001100110001100011000
Date Sampled	06/27/89 08/21/89 03/12/90 04/30/90 06/18/90 06/11/91	02/08/88 03/14/88 04/04/88 04/04/88 05/09/88 05/20/88 05/20/88 05/20/88 05/72/88 07/725/88 07/725/88 07/725/88 07/725/88 07/10/89 07/10/89 06/12/89 06/06/89 06/05/99 06/05/99 06/05/99 06/05/99 06/05/99 06/18/90 06/19/90 06/10/10 06/10/10 00 06/19/90 00/10/10/100 00/10/10/100000000	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/09/88 05/20/88 05/20/88 05/20/88 05/20/88 06/22/88 06/22/88 07/12/88 11/14/88 01/09/89 03/06/89 03/06/89
Well ID	888888888 888888888	С С С С С С С С С С С С С С	M2_6 M2_6 M2_6 M2_6 M2_6 M2_6 M2_6 M2_6

Cd (mg/l)	000.0 0 N 0 N 0 000.0 0 000.0 0 000.0 0 000.0	0.000 0.000	0.000 0.000 0.000 0.010 0.010 0.010 0.0000 0.0000 0.0000 0.000000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
Ca (mg/l)	297 279 261 261 261 261 261	245 245 245 245 292 292 292 292 292 292 292 292 292 29	255 255 255 260 273 260 273 260 275 275 275 275 275 275 275 275 275 275	260 220 250 250 250 252 252 252 252 252 25
Ba (mg/l)	0.027 ND 0.056 0.056 0.183 0.164 0.089	ND 0.071 0.064 0.0033 0.000 0.045 0.000 0.000 0.000 0.000 0.000	0.008 0.008 0.008 0.005 0.002 0.002 0.003 0.004 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.002 00000000	N 0.080 0.038 0.032 0.032 0.032 0.033 0.001 0.026 0.030 0.030 0.030 0.030 0.030 0.036
B (mg/l)	0.100 ND ND 0.260 0.460 0.120 0.120 0.130	ND 0.580 0.760 0.510 0.531 0.531 0.531 0.519 0.570 0.570 0.575	0.500 0.663 0.663 0.571 0.571 0.570 0.520 0.130 0.130 0.550 0.550 0.490	ND 0.300 0.380 0.255 0.255 0.389 0.389 0.389 0.389 0.389 0.389 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376
AI (mg/l)	0.40 ND ND 0.50 0.36 0.38 0.38	0.00 0.00 0.00 0.01 0.03 0.03 0.03 0.03	0.00 0.43 0.43 0.41 0.45 0.41 0.45 0.45 0.84 0.37 0.37 0.37	0.00 0.00 0.00 0.00 0.00 0.37 0.37 0.37
HCO3 (mg/l)	2222222222	88888888888888	2222222222222222	<u> </u>
Neg head (m)	<u>888888888</u>	8888888888888	222222222222222222222222222222222222222	<u>8888888888888888888888888888888888888</u>
Pz El (m)	559.391 559.165 558.958 558.294 558.629 558.147 558.969 558.147	558.605 559.275 559.275 559.546 559.546 559.461 559.144 558.025 558.025 558.166 558.166 558.166 558.166 558.035 558.055 558.546 558.546 559.546 556.556 556.56	558.208 ? 558.172 558.208 ? 558.172 559.955 559.452 559.242 559.242 559.272 559.242 558.272 558.123 558.123 558.123 558.162 558.162 558.928 558.928	548.408 548.686 549.686 549.296 549.296 549.436 549.189 549.189 548.741 547.552 547.729 548.043 548.250
(m) (m)	1.951 2.176 3.048 3.072 3.072 2.643 2.195 2.195	2.737 2.067 1.820 1.795 1.795 1.795 2.198 2.198 2.317 2.871 3.307 3.307	3.153 3.170 3.170 3.170 2.1387 2.1387 3.170 2.170 3.219 3.2069 3.2069 3.219 2.1737 2.1737 2.1737	5.791 5.514 5.5139 5.5139 4.764 5.011 4.270 5.457 6.578 6.578 6.578 6.578 6.578 6.578 6.578 6.578 6.578 6.578 6.578 6.578 5.550
Diss O2 (ppm)	0.2 ND 0.2 0.3 ND ND ND ND	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N O O O O O O O O O O O O O O O O O O	O N N N N N N N N N N N N N N N N N N N
Eh (mV,Temp)	320 ND 336 373 ND ND ND ND	N N N N N N N N N N N N N N N N N N N	335 278 278 278 273 253 253 253 253 253 253 253 253 253 25	N N N N 82 28 28 28 28 28 28 28 28 28 28 28 28 2
Fld. Cond (uS/cm) f(2728 ND ND 1762 1853 1846 1853	999999999999999	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
Hd	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.7 7 0.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.0 0.7 0.7 0.0 0.7 0.7 0.7 0.0 0.0 0.0
Water Temp (C)	0 N N 0 0 0 4 6 0 0 0 0 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 7 6 N N O O 6 6 7 7 7 8 8 7 6 7 7 6 7 7 7 7 7 7 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Date Sampled	05/22/89 06/06/89 06/27/89 08/21/89 10/30/89 03/12/90 04/30/90	02/08/88 03/14/88 04/04/88 04/14/88 04/14/88 04/14/88 05/30/88 05/30/88 05/30/88 05/30/88 05/20/88 05/22/88 09/19/88	11/11/1/00 11/01/12/02 03/06/89 04/10/89 05/22/89 06/06/89 06/27/89 08/21/89 03/12/90 03/12/90 03/12/90 03/12/90	02/08/88 03/14/88 04/04/08/88 04/18/88 05/509/88 05/509/88 05/50/88 05/20/88 05/20/88 05/20/88 05/20/88 09/19/88 09/19/88 09/19/88 01/09/89 03/06/89
Well ID		M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	M2-12 M2-12	M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10

The second se

. .

Cd (mg/l)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000
Ca (mg/l)	226 210 224 225 225 227 200 225 227 200 200 200 200 200 200 200 200 200	77 77 78 78 78 78 78 78 78 78 78 78 78 7	710 520 551 569 569 560 560 560 560 560 560
Ba (mg/l)	0.039 0.031 0.031 0.043 0.054 0.036 0.036 0.043 0.058	ND 0.054 0.051 0.030 0.030 0.033 0.033 0.035 0.030 0.035 0.030 0.035 0.030	ND 0.100 0.017 0.045 0.026 0.018 0.000 0.013 0.013
B (mg/l)	0.318 0.270 ND ND 0.380 0.240 0.240 0.290 0.290 ND	ND 0.250 0.250 0.256 0.256 0.256 0.256 0.256 0.256 0.256 0.266 0.2200 0.2200 0.200000000	ND 0.470 0.490 0.300 0.180 0.328 0.328 0.347 0.345 0.345 0.345
Al (mg/l)	0.15 0.27 ND 0.62 0.52 0.38 0.38 ND	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.42 0.24 0.15 0.39 0.39 0.71 .06
HCO3 (mg/l)	2222222222222	O N N N N N N N N N N N N N N N N N N N N	2222222222222
Neg head (m)	<u>222222222222</u>	222222222222222222222222222222222222222	2222222222222222
Pz El (m)	549.171 549.717 549.436 549.116 548.110 547.763 548.458 549.107 549.107 549.034 0.000	549.073 549.015 549.342 549.342 549.342 549.351 548.891 548.891 548.891 548.370 548.570 548.370 549.390 549.395 549.395 549.366 549.366 549.366 548.619 548.619 548.619 548.655 548.619	548.650 549.028 549.028 549.430 549.438 549.488 549.159 548.064 548.064 547.885 547.885 547.802
MTO (Ë)	5.029 4.484 5.084 5.084 6.030 6.437 5.743 5.743 5.743 5.768 5.743 5.768	3.852 3.857 3.857 3.357 3.357 3.357 3.357 4.457 4.457 3.344 4.407 3.336 4.407 3.336 4.407 3.336 3.337 3.336 4.577 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.337 3.336 3.346 3.337 3.346 3.337 3.346 3.337 3.346 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.337 3.3376 3.3376 3.3377 3.3376 3.3377 3.3376 3.3377 3.3377 3.3377 3.3377 3.3377 3.3376 3.3377 3.3376 3.33777 3.3376 3.33777 3.3376 3.337777 3.3376 3.337777777777	4.045 3.667 3.435 3.264 3.264 3.2207 3.420 3.420 4.630 4.630 4.630 4.630 4.810
Diss O2 (ppm)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	ON N N N N N N N N N N N N N N N N N N
Eh (mV,Temp)	88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
Fld. Cond (uS/cm) f	875 1594 ND ND 419 1719 1719 1260 1212 ND	N N N N N N N N N N N N N N N N N N N	
Hd	7.3 ND ND 7.3 8.4 ND ND ND ND	ら N ら ら ら い て る ら ら ら ら N N S N の N の N の N の N の N の N の N の N	7.0 7.0 6.0 7.1 8.7 7.0 6.0 7.1 8.7 7.0 6.0 7.1 8.7 7.0
Water Temp (C)	10 8 6 8 7 7 8 8 8 7 9 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 6 1 1 9 7 4 6 7 8 9 7 9 8 8 7 7 8 9 7 7 8 9 7 7 8 9 7 8	6.9 7.7.7 7.7.7 7.7.7 7.7.6 7.7.6 7.7.6 7.7.6 7.7.6 7.7.6 7.7.6 7.7.6 7.7.6 7.7.7 7.7.6 7.7.77 7.7.77 7.7.77 7.7.77
Date Sampled	04/10/89 05/22/89 06/06/89 06/27/89 08/21/89 03/12/90 04/30/90 04/30/90 04/30/90 03/12/90 03/12/90	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/30/88 05/30/88 05/30/88 07/25/88 07/12/88 03/12/88 06/16/89 06/16/89 06/12/89 06/12/89 06/12/90 06/13/91 06/13/91 06/13/91 06/13/91 06/13/91 06/03/91	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/20/88 05/20/88 05/20/88 05/22/88 05/22/88 05/22/88 05/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88
Well ID	M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10	ϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪ 44444444444444	M 44 - 44 - 44 - 44 - 44 - 44 - 44 - 44

٩,

. . .

Cd (mg/l)	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	0.000 0.003 0.003 0.002 0.000 0.000 0.000
Ca (mg/l)	793 808 858 858 858 858 614 858 615 658 615	160 2 240 2 332 240 2 333 333 333 333 333 333 335 333 333 335 333 333	410 330 360 360 349 446 354 354
Ba (mg/l)	0.008 0.096 0.013 0.027 0.027 0.028 0.030 0.039 0.129 0.109 0.109 0.103	ND 0.071 0.039 0.077 0.030 0.030 0.082 0.082 0.033 0.035 0.033 0.034 0.033 0.034 0.033 0.035 0.034 0.032 0.033 0.035 0.035 0.055 0.055 0.055	N 0.030 0.030 0.030 0.030 0.053 0.053 0.053 0.053
B (mg/l)	0.289 0.373 0.341 0.375 0.345 0.345 0.345 0.345 0.345 0.345 0.260 0.260 0.260 0.260	 ND 0.340 0.340 0.340 0.325 0.341 0.327 0.327 0.315 0.316 0.316 0.316 0.316 0.316 0.327 0.327 0.328 0.316 0.327 0.327 0.327 0.327 0.326 0.327 0.326 0.326 0.400 0.4	ND 0.320 0.390 0.240 0.238 0.238 0.238 0.238
AI (l/gm)	0.09 0.14 0.14 0.14 0.28 0.14 0.28 1.13 0.52 0.52 0.52 1.13 0.52 1.13 0.52 0.74 0.52 0.74 0.75 0.75 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.77	0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.02
HCO3 (mg/l)	$\begin{smallmatrix} & & & \\ & $	222222222222222222222 222222222222222	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Neg head (m)	22222222222222222222222222222222222222	<u> </u>	<u>888888888</u> 8
Pz Ei (m)	547.940 548.214 548.467 549.442 549.473 549.473 549.174 549.174 548.741 548.741 548.741 548.180 548.180	548.561 548.88 549.195 549.195 549.195 549.421 549.421 549.101 548.135 547.836 548.135 548.135 548.135 548.135 548.409 548.327 549.409 549.409 548.346 549.946 549.342 549.073 549.347 549.073 548.347 548.347 548.379	543.989 544.251 544.501 544.462 544.370 544.111 544.111 ND
(m)	4.755 4.481 4.288 3.252 3.252 3.253 3.520 4.423 4.813 3.553 3.554 4.813 3.554 4.813 3.554 4.813 3.554 4.813 3.554 4.813 3.554 4.813 3.554 4.813 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.825 4.8266 4.82666 4.82666 4.82666 4.826666 4.82666666666666666666666666666666666666	4.133 3.706 3.298 3.298 3.2974 3.274 3.259 4.642 4.642 4.642 4.785 4.785 4.785 4.785 4.785 4.785 4.785 4.785 4.785 4.785 5.303 4.785 5.303 4.785 5.374 5.3555 5.3555 5.3555 5.35555 5.35555 5.3555555 5.355555555	2.067 1.554 1.554 1.594 1.945 ND
Diss O2 (ppm)	8.44444 0.470000000000	N N N N N N N N N N N N N N N N N N N	U U U U U U U U U U U U U U U U U U U
Eh f(mV,Temp)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 0 0 2 2 3 0 0 2 8 3 2 8 3 2 8 9 0 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ND N
Fld. Cond (uS/cm) f	ND ND 365 365 284 ND 865 33969 33969 ND ND ND ND ND ND ND 865 3380 3380 3380 3380 3380 3380 3380 338	ND ND ND ND ND ND ND ND ND ND ND ND ND N	<u>888888888</u>
Ha	4.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	- N N N N N N N N N N N N N N N N N N N	7.1 7.0 7.0 7.0 7.0 7.1 7.1 6.5
Water Temp (C)	5.9 8.6 9.7 9.7 7.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.8 7.8 6.0 11.9 11.9 12.2 12.2 10.8
Date Sampled	11/14/88 01/09/89 03/06/89 04/10/89 06/06/89 06/06/89 06/27/89 06/27/89 06/12/189 06/130/99 06/130/99 06/130/99 06/130/90 06/130/90 06/130/90 06/130/90 06/130/90 06/11/91	02/08/88 03/14/88 04/04/88 05/09/88 05/20/88 05/20/88 05/20/88 05/22/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 03/106/89 03/12/90 06/27/89 07/27/89 07/27/27/89 07/27/89 07/27/89 07/27/89 07/27/89 07/27/80	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/30/88 05/30/88 05/20/88
Well ID	M4 7 M4 7 M4 7 M44 7 M44 7 M44 7 M44 7 M44 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	M M M M M M M M M M M M M M M M M M M	M5 4 M5 4 M5 4 M5 4 M5 4 M5 4 M5 4 M5 4

Ŀ

and the first

A second and a second

· · · ·

Cd (mg/l)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	0.001 0.000 0.000 0.000 0.000
Ca (mg/l)	278 315 315 315 315 315 315 315 315 315 315	88888888888888888888888888888888888888	13 13 13 13
Ba (mg/l)	0.000 0.028 0.035 0.035 0.035 0.035 0.038 0.038 0.038 0.197 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038	ND 0.120 0.120 0.150 0.0750 0.0750 0.0750 0.0750 0.0750000000000	ND ND 0.120 0.030
B (mg/l)	0.320 0.344 0.283 0.753 0.289 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.240 0.240 0.210 0.2200 0.2200000000	ND 1.100 1.400 0.897 1.475 1.475 1.475 1.475 1.174 1.174 1.128 1.135 1.1	N N N N N N N N N N N N N N N N N N N
AI (I/gm)	0.36 N 000 0.44 0.00 0.45 0.00 0.44 0.00 0.49 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.000 0.000 0.000 0.000000	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02	0.00 0.00 0.00 0.00 11.0
HCO3 (mg/l)	N N N N N N N N N N N N N N N N N N N	an a	
Neg head (m)	22222222222222222222222222222222222222	222222222222222222222222222222222222222	
Pz El (m)	543.142 543.038 543.038 543.172 543.450 544.410 544.117 544.111 544.111 544.248 544.248 543.338 544.111 543.338 543.338	545,407 545,815 546,105 546,105 546,105 546,133 546,133 544,133 544,754 544,550 544,550 544,550 544,550 544,754 544,251 544,251 545,294 545,294 545,294 545,791 545,791 545,791	540.926 541.173 541.685 541.950 542.167
MTQ (E)	2.914 2.883 2.883 2.606 2.384 2.606 2.384 2.195 2.807 1.756 1.945 2.658 2.658 2.658 2.658 2.057 2.057 2.057	0.649 0.241 0.243 0.265 0.137 0.137 0.265 0.317 1.506 1.302 1.302 1.506 0.313 0.265 0.213 0.265 0.213 0.265 0.213 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.265 0.273 0.2750 0.2750 0.2750 0.2	5.130 4.883 4.371 4.106 3.889
Diss O2 (ppm)	ϗ Ζ ಙ ϣ ϗ ϗ ϟ ϟ Ζ Ζ Ϲ Ͼ Ͼ Ζ Ζ ϟ Ζ ಙ Ο Γ΄ ϟ Ͽ Ο ῦ ῦ ῦ Ο Ο Ϯ ಙ Ο Ο Ο Ο ῦ Ο	N N N N N N N N N N N N N N N N N N N	<u>88888</u>
Eh (mV,Temp)	404 28 28 28 28 28 28 28 28 28 28 28 28 28	UNNN 2222 222 222 222 222 222 222 222 22	
Fld. Cond (uS/cm) f(ND ND ND ND ND ND ND ND 1695 1695 1695 1330 1330 1330 1330	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
Hd	х 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 7 7 8 7 7 7 7 8 9 7 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 7 8	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Water Temp (C)	, , , , , , , , , , , , , ,	4 년 80 년 61 년 87 년 61 년 90 년 90 년 90 년 90 년 90 년 91 80 90 90 90 90 90 90 90 90 90 90 90 90 90	00 0.0 0.0 0 0 0 0
Date Sampled	08/22/88 09/19/88 10/17/88 11/14/88 03/06/89 03/06/89 06/12/89 06/22/89 06/22/89 06/22/89 06/22/89 06/22/89 06/22/89 06/22/90 06/22/89 06/23/91 06/03/91	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/09/88 05/09/88 05/25/88 05/25/88 05/22/88 05/22/88 05/22/89 03/12/90 03/12/90 06/27/89 05/22/89 03/12/90 06/27/89 07/25/88 07/27/89 07/25/88 07/25/88 07/27/89 07/25/88 07/27/89 07/25/89 07/25/89 07/27/80 07/27/80 07/27/80 07/27/80 07/27/80 07/27/80 07/	12/09/87 02/08/88 03/14/88 04/04/88 04/18/88
Well ID	M M M M M M M M M M M M M M M M M M M	M5_23 M5_23	M5_53 M5_53 M5_53 M5_53 M5_53

Cd (mg/l)	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 ON 000.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.04 0.05 0.04 0.16
Ca (mg/l)	∞ç∡∞ç∞çççQ∞çQQ¢çç	2 2 9 2	<u>8</u> 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9	480 380 510 440
Ba (mg/l)	0.016 0.061 0.054 0.000 0.000 0.002 0.018 0.015 0.042 0.042 0.015 0.015 0.015 0.015 0.015 0.015	0.100 0.064 ND 0.122	ND 0.019 0.019 0.010 0.010 0.010 0.010 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.018	0.012 0.012 0.010
B (mg/l)	1.846 2.688 2.833 2.454 2.471 2.471 2.477 2.476 3.610 3.610 3.610 1.850 1.850 1.850 1.850	2.030 ND 2.220	ND 1.100 0.430 0.400 0.400 0.500 0.500 0.370 0.370 0.370 0.250 0.01 0.01 0.01 0.01 0.120 0.120 0.120 0.120	ND ND 0.350 1.600
(I/gm)	0.00 0.18 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	00.00 00.00	°C°€2686886844988888	22 31 240
HCO3 (mg/l)	222222222222222222222222222222222222222	ND ND 128.1		
Neg head (m)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, N 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Pz El (m)	542.130 542.045 541.953 541.426 541.426 540.589 540.589 540.589 540.589 540.589 540.589 540.589 542.240 542.240 542.240 541.365 540.078	541.728 541.728 541.048	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	22222
MTD (m)	3.926 4.011 4.103 4.103 5.517 5.486 5.548 5.547 4.103 5.547 5.548 5.548 5.547 5.548 5.547 5.548 5.547 5.548 5.547 5.548 5.547 5.548 5.547 5.548 5.5475 5.5475 5.5475 5.5475 5.54755 5.5475555555555	4.237 5.008	<u>9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 </u>	
Diss O2 (ppm)	O O O O C C O C C C C C C C C C C C C C	ND 3.3 2.3 2.3 e tailings	N N N N N N N N N N N N N N N N N N N	2222
Eh f(mV,Temp)	85 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.4 8.7 565 ND ND NI 13.5 ND 612 ND 3.3 8.5 8.2 616 ND 2.3 Wells in the vadose or saturated zones of the tailings	N N N N N N N N N N N N N N N N N N N	22222
Fld. Cond (uS/cm) fi	N N N N N N N N N N N N N N N N N N N	565 612 616 616 • or saturate	<u> </u>	22222
Hd	8 8 9 9 9 7 7 8 9 7 7 8 8 7 7 8 8 7 8 7	8.7 ND 8.2 8.2 e vadose	4 ㎡ 4 號 號 號 號 號 號 號 號 號 號 號 號 號 號 號 號 號	4.7 3.8 3.8 8.2 8.2
Water Temp (C)	4 5 6 7 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7	11.4 13.5 8.5 Wells in th	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	6.0 5.0 5.0
Date Sampled	05/09/88 05/30/88 06/20/88 08/22/88 09/19/88 09/17/88 11/17/88 01/09/89 03/06/89 03/06/89 04/10/89 04/10/89 06/06/89 06/07/06/89 06/06/89 06/06/89 06/07/89 06/07/89 07/06/89 06/07/06/89 07/06/89 07/06/89 07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/06/89 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/17/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/170 00/07/100 00/07/100 00/07/100 00/07/180 00/07/100 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/07/100 00/07/180 00/07/180 00/07/180 00/07/180 00/07/180 00/00000000000000000000000000000000	04/30/90 06/18/90 03/11/91	12/09/87 03/14/88 04/04/88 04/04/88 04/18/88 05/09/88 05/09/88 07/125/88 07/125/88 01/109/89 01/109/89 04/109/89 04/1709/89 04/1709/89 04/1709/89 04/1709/89 04/1709/89 04/1709/89	12/09/8/ 02/08/88 03/14/88 04/04/88
Well ID	MA MA MA MA MA MA MA MA MA MA MA MA MA M	M5-53 M5-53 M5-53	2000 20 20 20 20 20 20 20 20 20 20 20 20	81-7 81-7 81-7 81-7

the second strength and the second se

Cd (mg/l)	0.20 0.21 0.22 0.14 0.17 0.17 0.28 0.28 0.28 0.17 0.28 0.29 0.29 0.29	14.00 17.00 18.00 18.00 19.00 17.00 17.00 17.00 17.00 17.00 17.00 11.00 11.00 11.00	0.95 1.10 0.85 1.30 1.30 1.30 1.30 1.50 1.50 0.92 0.92
Ca (mg/l)	520 550 550 550 550 550 550 550 550 550	400 320 320 320 331 331 550 550 550 550 550 550 550 550 700 550 55	400 370 370 440 450 320 320 520 320 520 320
Ba (mg/l)	0.010 0.022 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	ND ND 0.005 0.014 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	ND ND 0.013 0.010 0.027 0.027 0.010 0.010 0.010
B (mg/l)	2,000 2,000 2,000 2,000 1,5000 1,5000 1,5000 1,5000 1,50000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND 500 5.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
AI (mg/l)	340 550 677 657 650 650 7440 7440 720 500 720 500 520 520	1900 2400 2500 2500 2500 2200 2200 2700 1100 11700 11700 2100 21	690 1100 850 920 1200 850 850 770 1500
HCO3 (mg/l)	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Neg head (m)	0,0,1,1,1,1,2,2,0,0,1,1,1,2 0,0,0,0,0,1,1,1,2,0,0,1,1,1,0 0,0,1,1,1,1,0,0,1,1,1,0,0,0,0	O & C & C & C & C & C & C & C & C & C &	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Pz El (m)	2222222222222222222 222222222222222222	ND 563.000 563.000 563.300 563.500 565.500 563.5000 563.50000 563.50000 563.50000 563.500000000000000000000000000000000000	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
MTD (m)	2222222222222222222	22222222222222222222222222222222222222	<u>8888888888888888888888888888888888888</u>
Diss O2 (ppm)	N N N N C - 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N C C N C C C C C C C C C C C	N N N N N N N N V C O O O O O O O O O O O O O O O O O O
Eh f(mV,Temp)	550 550 550 550 550 550 550 550 550 550	N N N N N N N N N N N N N N N N N N N	850 550 570 570 570
Fld. Cond (uS/cm) f	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22222222222222222222222222222222222222	<u>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u>
Hd	୧୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦	で、 で、 で、 で、 し、 し、 し、 し、 し、 し、 し、 し、 し、 し、 し、 し、 し、	8 8 8 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7
Water Temp (C)	0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
Date Sampled	04/18/88 05/09/88 06/20/88 07/25/88 03/15/88 03/15/88 03/15/88 03/15/88 03/15/89 03/11/89 03/12/90 03/12/90 03/12/90	12/09/87 02/08/88 03/14/88 04/04/88 06/09/88 05/09/88 05/26/88 06/26/89 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 08/21/89 03/12/90 06/06/89 08/21/89 03/12/90	1.2/09/87 02/08/88 04/04/88 04/18/88 05/09/88 05/20/88 07/25/88 08/22/88 09/19/88 09/19/88
Well ID	881-7-7-8881-7-7-7-7-7-7-7-7-7-7-7-7-7-7	84-18 84-184	82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4

Cd (mg/l)	0.68 0.54 0.46 0.42 0.43 0.43	0.37 0.58 0.442 0.442 0.442 0.442 0.442 0.442 0.442 0.440 0.460000000000	0.69 0.69 0.71 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	1.60
Ca (mg/l)	380 380 390 340 390 390 340 340 340	4430 470 470 470 470 470 470 470 470 480 480 480 480 480 480 480 480 480 48	288 299 299 299 299 299 299 299 299 299	260
Ba (mg/l)	0.010 0.010 0.010 0.010 0.010 0.010 0.025 0.025	ND 0.013 0.013 0.010 0.010 0.010 0.150 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.010 0.0110 0.0100 0.0100 0.0100 0.0100000000	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	QN
B (mg/l)	9 9 9 4 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	N N N N N N N N N N N N N N N N N N N	2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	QN
AI (mg/l)	320 370 370 370 370 370 370 370 370 370 37	468 650 770 650 650 650 650 650 650 650 650 7860 7860 860 7860 860 7860 860 860 860 860 860 860 860 860 860	71 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	30
HCO3 (mg/l)		22222222222222222222222222222222222222	<u> </u>	QN
Neg head (m)	N N O I I I I I I I I I I I I I I I I I	NN NN N DD NN N DD N DD N DD N DD	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	QN
Pz El (m)	<u> </u>	888888888888888888888888888888888888888	ND 562.200 562.200 562.200 562.400 562.400 562.400 562.200 562.300 562.300 562.300 562.200 562.200 562.200 562.200 562.200 562.200 562.200	562.761
ΔTO (E)		<u>9999999999999999999999999999999999999</u>	<u> </u>	3.898
Diss O2 (ppm)		0 0 0 0 0 4 0 5 0 5 0 5 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	DN
Eh (mV,Temp)	550 580 580 550 560 560 560 580 580 580 580 580 580 580 580 580 58	UNUNS 222 222 222 222 222 222 222 222 222 2	N N N N N N N N N N N N N N N N N N N	QN
Fld. Cond (uS/cm) f(<u>8888888888888888888888888888888888888</u>			DN
Hď	332 340 357 37 37 37 37 37 37 37 37 37 37 37 37 37	4.6.4.4.4.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6	кккк 200000 200000 200000 200000 200000 2000000	4.7
Water Temp (C)	4.0 3.0 1.1.0 1.0 1.0 1.0 0.0 2.0 2.0 2.0 2.0	8 0.0 8 0.0 8 0.0 9 0.0 9 0.0 9 0.0 8 0.0 8 0.0 8 0.0 9	0.01 0.02 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05	7.7
Date Sampled	01/09/89 03/06/89 04/11/89 05/06/89 08/21/89 10/29/89 03/12/90 04/30/90	12/09/87 02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/09/89 05/12/98 03/05/89 03/12/90 04/11/89 03/12/90 04/30/90 04/30/90	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/20/88 07/25/88 09/19/88 07/25/88 09/19/89 07/25/88 03/06/89 03/06/89 08/21/89 03/12/90 03/12/90	02/08/88
Well ID	824 824 824 824 824 824 824 824 824 824	82-8 82-8 82-8 82-8 82-8 82-8 82-8 82-8	82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16	P4

a sur a de la companya de la compa

Cd (mg/l)	2.50 2.50 2.50 2.80 2.10	- 2 2 2 2 3 3 3 5 3 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 4 5	1.10	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	000 00 00 00 00 00 00 00 00 00 00 00 00	0.0.0.0.0.0.0.0.0.0.0.0.0 20.0.0.0.0.0.0
Ca (mg/l)	280 390 330 520 470	390 370 550 450 450 450 450	460 430 430	230 300 350 510 410	570 576 576 570 570 440 440 570 570 570 573 533	260 350 350 580 580 440 640 640 830 830
Ba (mg/l)	0.027 0.010 0.010 0.010 ND	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.012 0.220 ? 0.070	0.00 0.018 0.010 0.010 0.00 0.00 0.00 0.	0.010 0.010 0.010 0.010 0.010 0.150 0.150 0.190 0.190	ON 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
B (mg/l)	10.0 16.0 20.0 25.0 21.0	43.0 41.0 18.0 16.0 18.0 91 91	23.0 26.0 23.0	ND 8.7 75.0 20.0 20.0 34.0	23.0 21.0 16.0 16.0 19.0 28.0 28.0 28.0 19.0 28.0 19.0 28.0 19.0	ND 21.0 36.0 36.0 56.0 120.0 56.0 56.0 55.0 55.0 55.0 55.0
(I/gm)	88 140 200 - 58 58 -?	77 93 69 87 87 87	50 37 51	670 900 1100 1600 7 1200 7	1100 1100 1100 1100 1100 1200 1200 1200	N 4 υ ο ΰ ὃ N 4 ο
HCO3 (mg/l)		2222222222	O N N N N N			
Neg head (m)			O N N N N		<u> </u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Pz El (m)	562.734 563.091 563.258 ND 563.228	563.084 562.941 562.755 562.655 562.614 562.493 563.103 563.094	562.841 562.682 ND	562.743 ND 562.871 563.017 563.155 563.155 563.176 ND	562.963 562.691 ND 562.631 562.521 562.469 563.057 563.078 562.078 562.664 ND	562.905 563.069 563.069 563.536 563.450 563.450 563.386 563.228 563.228 563.228 562.469 562.469
VTO (m)	3.926 3.569 3.402 ND 3.432	3.575 3.719 3.904 4.005 4.145 3.557 3.557 3.566	3.819 3.978 ND	4.337 ND 4.209 4.063 3.926 3.904 ND	4.118 4.389 ND 4.560 4.612 4.612 4.002 4.267 4.417 ND	3.798 3.633 3.167 3.252 3.252 3.252 3.252 3.252 3.252 3.252 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 4.253 4.253
Diss O2 (ppm)		1 2 2 3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.7 5.8 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	4 0 0 0 1 1 0 0 4 Z	О О О О О О О О О О О О О О О О О О О
Eh (mV,Temp)	UN UN 0022 001 0022 0022	410 390 420 420 290 430 430 420	380 420 400	510 510 510 510 510 510	520 500 500 500 550 520 500 500 500 500	ND ND 250 330 770 330 410 433 370 433
Fld Cond (uS/cm) f($\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\$	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
H	4 Z 4 4 4 4	4 4 6 0 0 4 4 4 0 0 8 0 6 9 0 0 9 0 9	4 4 4 0 1 0	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ю 4 4 4 4 ю ю 4 ю 0 И 4 И 0 1 0 0 1 0 8 4	0, 4, 4 Z 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 1, 1, 1, 4, 4, 4, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Water Temp (C)	0 N C 4 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22:9 17.8 11.3 9.0 7.2 15.0	7.0 16.9 16.9	10.6 ND 12.7 15.2 10.1 22.5	10110100000000000000000000000000000000	7.9 13.4 15.2 11.2 20.1 11.2 24.6 7.9 24.6 7.9 22.1 11.2 27.9 27.9
Date Sampled	03/14/88 04/04/88 04/18/88 05/09/88 05/30/88	07/25/88 08/22/88 10/17/88 11/14/88 01/09/89 03/06/89 05/22/89 08/21/89	10/29/89 03/12/90 04/30/90	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/09/88 05/30/88	08):22/88 10/17/88 01/09/89 03/06/89 03/06/89 03/06/89 03/12/90 03/12/90 03/12/90	02/08/88 03/14/88 04/04/88 04/14/88 05/09/88 05/20/88 05/20/88 07/25/88 07/25/88 11/14/88 01/09/89
Well ID	С С С С С 4 4 4 4 4 4	4 9 9 9 4 9 9 4 9 4 9 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cd (mg/l)	0.33 0.01 0.23 0.01 0.87 ?		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000.0 DN 000.0 000.0	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.01 0.05 0.02
Ca (mg/l)	490 610 700 550 670		350 530 600 88 453 678 678 658	509 830 835 835	190 260 250 250 280 280 280 280 280 280 280 280 370 370 370 370 370 370 370	350 350 380
Ba (mg/l)	0.010 0.010 0.045 0.077 0.077 0.170		ND 0.056 0.047 0.025 0.025 0.025 0.025 0.069	0.098 ND ND 0.031 0.088	ND 0.090 0.770 0.770 0.046 0.051 0.072 0.072 0.072 0.072 0.072 0.072 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.076 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.075 0.077 0.077 0.0750 0.0750 0.0750 0.0750000000000	ND 0.085 0.120
B (mg/l)	47.0 60.0 22.0 82.0 97.0 94.0		ND 0.79 0.67 1.10 1.10 0.51	1.38 ND 0.36 0.56	ND 0.400 0.320 0.250 0.250 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.270 0.270 0.270 0.270 0.270 0.270	ND 0.440 0.280
AI (mg/l)	8 2 8 8 2 4		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.09 0.51	0.010 0.010 0.010 0.010 0.010 0.040 0.040 0.140 0.140 0.130 0.140 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.160 0.160 0.160 0.160 0.140 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0250 0.010 0.010 0.0250 0.010 0.010 0.0250 0.0100 0.0100 0.0100 0.0100 0.0100 0.01000 0.01000 0.0100000000	0.010 0.010 0.070
HCO3 (mg/l)					888888888888888888888888888888888888888	O O O N N N
Neg head (m)	<u>8888888</u>		2222222222 222222222222222222222222222		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q Q Q N N N
(m)	562.661 563.484 563.228 562.908 562.908 562.889 ND		561.979 562.067 562.302 562.306 562.336 562.339 562.339 562.339	562.540 562.540 562.314 562.424	562.048 562.124 562.374 562.374 562.478 562.478 562.478 562.405 562.405 562.137 561.835 561.835 561.835 561.713 561.728 561.728 561.728 561.728 561.728 561.737 561.738 562.140 562.140 562.137 562.138 562.137 562.5300 562.5300 562.5300 562.5300 562.5300 562.53000 562.53000000000000000000000000000000000000	562.383 562.484 562.731
(m) (m)	4.042 3.219 3.475 3.795 3.813 ND		5.422 5.334 5.005 5.005 4.956 5.002 5.002 5.002 5.002	4.977	5.182 5.105 5.105 5.105 5.105 5.105 5.105 5.105 5.105 5.2555 5.2555 5.2555 5.2555 5.2555 5.2555 5.2555 5.2555 5.25555 5.25555 5.25555 5.2555555 5.255555555	4.572 4.471 4.225
Diss O2 (ppm)	1.4 0.2 ND ND		N N N N N N N N N N N N N N N N N N N	τ- Ο Ν Ο Ν Ο Ν Ο Ν Ο Ν Ο Ν	N N N N N N O O O O O O O O O O O O O O	
Eh f(mV,Temp)	450 450 320 390 390	e tailings	N N N N N N N N N N N N N N N N N N N	28 N N D 28 N N D N D N D N D N D N D N D N D N D N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ON N N
Fld. Cond (uS/cm) f(Weils at the base of or below the tail	UNN UNN UNN UNN UNN UNN UNN UNN UNN UNN		ND ND ND ND ND ND ND ND ND ND ND ND ND N	0000
Hd	4 4 0 4 4 0 7 4 6 0 0 0 4 6 0	ie base of	N 4.00 2.00 2.00 0 0 0 0 0 0 0 0 0 0 0 0 0	ND ND 0.3 0.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.0 7.1
Water Temp (C)	9.0 17.9 11.6 9.7 15.6	Wells at th	N 1 8 4 4 6 6 6 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND ND 18.9 24.2	8.5 8.0 8.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0 8.0 7.0 7.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	7.9 9.4 15.1
Date Sampled	03/06/89 05/22/89 08/21/89 10/29/89 03/12/90 04/30/90		02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/30/88 06/20/88 04/10/89	06/10/90 06/06/89 06/10/90 06/10/90	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/20/88 05/20/88 05/20/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 01/1/18 01/109/89 03/11/189 03/11/189 03/11/189 03/12/88 03/12/88 00/12/88 00/12/88 00/12/88 00/12/88 00/12/88 00/12/88 00/12/88	02/08/88 03/14/88 04/04/88
Well ID	ଓ ଓ ଓ ଓ ଓ ଓ ଜୁନୁ ଜୁନୁ ଜୁନୁ		222222222	22222	222222222222222222222222222222222222222	р <u>3</u> 33

Cd (mg/l)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.01 0.01 0.02 0.03 0.13 0.13	0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.0 0.0 10.0 10.0 0.0 0 0.0 0 00.0
Ca (mg/l)	370 370 350 350 320 320 320 320 330 330 330 330 330 33	474 689 419 574 550 550	546 548 548 515 514 573	341 376 376 586 586 522
Ba (mg/l)	0.045 0.045 0.045 0.055 0.063 0.037 0.037 0.042 0.037 0.042 0.037 0.037 0.037 0.037 0.037 0.089 0.089 0.089 0.089 0.089 0.088 0.095 0.0000000000	0.092 0.079 0.084 0.081 0.081 0.032 0.030 0.030	0.086 0.091 0.018 0.009 0.031 0.023 0.025	0.118 0.049 0.058 0.061 0.071 0.100 0.160 0.160
B (mg/l)	0.310 0.310 0.330 0.330 0.330 0.280 0.200 0.2800 0.2800 0.280000000000	0.580 0.660 0.570 0.570 0.590 0.710 1.040 1.040 1.260	1.800 2.710 2.710 2.060 3.020 4.300 4.100	0.230 0.520 0.520 0.520 0.570 0.570 1.200 1.130
AI (I)gm)	0.210 0.500 0.500 0.500 0.210 0.250 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.1100 0.120 0.1100 0.520 0.1100 0.520	0.450 1.620 0.410 0.110 0.3390 0.440 0.000	0.440 1.770 0.360 2.610 2.610 2.320 2.320 2.320	0.420 0.580 0.3580 0.150 0.150 0.490 0.490 0.490
HCO3 (mg/l)		861 847 847 847 847 847 847 847 847 847 847	542 542 455 423 455 823 823 800 800 800 800 800 800 800 800 800 80	577 573 573 877 877 877 877 873 873 877 873 877 873 877 873 877 877
Neg head (m)	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $			$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array} \\ \end{array} \\$
Pz El (m)	562.777 ND 562.828 562.825 562.853 562.467 562.167 562.108 562.108 562.108 562.713 562.208 562.203 562.203 562.263 562.263 562.263 562.263 562.263 562.263	ND 562.229 562.369 562.369 562.220 562.250 ND ND S61.680	562.802 562.332 562.332 562.284 562.284 561.945 ND 561.799	562.793 562.317 562.317 562.302 562.308 561.854 561.744
MTO (m)	4.185 ND5 4.127 4.127 4.127 4.285 3.993 3.993 3.993 4.505 4.	4.161 4.648 4.508 4.657 4.657 4.657 8.657 8.657 ND ND ND S.197 5.197	4.167 4.636 4.499 4.685 4.685 4.633 5.023 5.023 ND	4.188 4.663 4.532 4.673 4.673 5.127 ND ND
Diss O2 (ppm)	N N N N 9 4 6 0 6 4 6 6 6 6 7 7 8 7 9 6 7 9 6 7 9 7 9 7 9 7 9 7 9 7 9 7 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} X & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eh f(mV,Temp)	200 200 200 200 200 200 200 200 200 200	ND 196 227 187 176 ND 231 231	2009 2009 2009 2009 2009 2000 2000 2000	ND 2640 205 205 205 205 205 205 205 205 205 20
Fld. Cond (uS/cm) 1	N N N N N N N N N N N N N N N N N N N	ND 3361 3660 2100 1831 ND ND 1867	ND 5900 3460 3310 3310 ND ND 3335	ND 2722 1410 1224 2300 ND 1369
Hď	6.7 7.0 7.2 6.5 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0.0 0.0 0.0 7 0.0 7 0 7
Water Temp (C)	41 2.21 2.22 2.22 2.22 2.22 2.22 2.22 2.	19.2 11.3 13.5 13.5 26.5 ND ND	17.7 12.5 16.8 17.1 26.8 ND ND	84 91 177 177 198 177 198 199 100 100 100 100 100 100 100 100 100
Date Sampled	04/18/88 05/09/88 05/30/88 05/20/88 07/25/88 07/25/88 01/09/89 01/09/89 03/06/89 03/06/89 03/11/89 03/21/89 03/21/89 03/21/89 03/21/89 03/21/89 03/21/89 03/21/89 03/22/89 00/22/89 00/22/89 00/20/20/89 00/20/20/89 00/20/89 00/20/89 00/20/	06/18/90 03/11/91 06/03/91 03/30/92 05/26/92 08/26/92 11/17/92 03/01/93	06/18/90 03/11/91 06/03/91 03/30/92 03/30/92 05/26/92 08/26/92 11/17/92 03/01/93	06/18/90 03/11/91 06/03/91 03/30/92 05/26/92 08/26/92 11/17/92 03/01/93
Well ID	5	РЗА РЗА РЗА РЗА РЗА РЗА РЗА РЗА РЗА РЗА	23888888888888888888888888888888888888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(l/ɓɯ)	0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.01 0.02	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Si (mg/l)	N 2 6 7 7 4 4 7 7 8 7 6 7 7 7 7 8 7 7 8 7 7 8 7 8 7 8	N 8 6 8 6 7 7 7 6 6 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
SO4 (mg/l)	O O O O O O S 22 22 28 0 O O O O O O O O O O O O O O O O O O	337 D D 28 3 3 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(l/bm)	7 5 5 8 8 8 8 8 8 9 9 9 9 8 8 8 8 8 8 8 8	88 900 101 101 101 101 101 101 101 101 101
Pb (ng/l)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Ni (mg/l)	А О О О О О О О О О О О О О	N 9.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0
Na (mg/l)	200 200 200 200 200 200 200 200 200 200	140.0 190.0 177.3 177.4 177.5
nM (l/gm)	0.140 0.000 0.000 0.001 0.001 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.230 0.170 0.150 0.151 0.151 0.127 0.127 0.126 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.1280 0.1280 0.085
(I/ɓɯ)	24.0 28.0 28.0 28.0 29.1 28.0 28.0 28.1 270.4 270.2 28.0 28.1 270.4 28.2 28.1 27.1 28.2 28.5 27.1 28.5 27.1 28.5 27.1 28.5 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	21.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25
K (mg/l)	22222222222222222222222222222222222222	
Fe (mg/l) ent wells	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
CI Cu Fe (mg/l) (mg/l) (mg/l) Background and downgradient wells	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
Cl (mg/l) 3ackground ai	N N N N N N N N N N N N N N N N N N N	$\begin{smallmatrix} & N \\ N$
Date Sampled E	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/09/88 06/20/88 06/20/88 06/22/88 06/22/88 06/22/88 06/22/88 06/22/89 00/22/89 00/	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/25/88 06/20/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 06/22/89 06/22/89 06/22/89 06/22/89 06/22/89 06/22/89
Well ID	8 8	8860,23 800,23 800,200,200,200,200,200,2000,200,2000000

1

L

ļ

.

Zn (mg/l)	0.06 0.08 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4 9 8 6 7 8 8 9 9 9 9 9 9 9 8 8 8 9 9 9 9 9 9 9
Si (mg/l)	11.3 10.3 9.6	N V Č Š 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 8 8 8 6 5 8 8 9 9 9 9 9 9 9 9 9 5 8 8 9 9 9 9 9
SO4 (Ing/I)	299 329 305	800 - 200 200 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S (I/ɓm)	101 120 105	88 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 1400 1400 1324 1324 1324 1324 1324 1328 13 12 12 12 12 12 12 12 12 12 12 12 12 12
dq (l/gm)	0.09 0.01 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ni (mg/l)	0.01 0.00 0.01	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UN 0.0.0.0 8.0.0.0.0 9.0.0 0.0.0 0.0 0.0 0.0 0.0 0.0
Na (mg/l)	171.8 198.9 206.5	150.0 200.0 200.0 200.0 207.0 154.9 154.9 154.9 154.9 154.9 159.1 159.1 265.1 267.2 267.2 267.2 267.4 269.1 189.3 189.3 180.1 2612.0 2612.0	5 7 8 8 8 7 8 9 9 9 9 9 9 9 9 8 8 9 9 9 9
Mn (I/gm)	0.092 0.104 0.094	0.008 0.008 0.0036 0.0036 0.0045 0.002 0.003 0.0018 0.0028 0.0018 0.0028 0.0018 0.0028 0.0018 0.0028 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	8 2 8 8 8 4 4 9 9 9 9 9 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9
Mg (I/gm)	22.5 25.2 22.2	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	22 26 27 27 28 29 27 29 27 20 27 27 20 27 27 20 27 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20
, К (I/gm)	2.10 2.00 1.50		<i>46666666</i> 666888888888888888888888888888
Fe (mg/l)	0.62 0.13 0.34	0.00 0.07 0.07 0.07 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03	480 350 350 350 353 353 353 353 353 353 35
Cu (mg/l)	0.03 0.06 0.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.35 0.46 0.72 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3
CI (mg/l)	4.97 2.81 2.23	N N N N N N N N N N N N N N N N N N N	
Date Sampled	04/30/90 06/18/90 03/11/91	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/09/88 05/09/88 05/25/88 09/19/88 09/19/88 03/19/89 01/02/89 01/02/89 06/06/89 06/02/89 06/18/90 06/18/89 06/18/89 06/18/89 06/18/90 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/90 06/18/90 06/18/80 06/18/80 06/18/80 06/18/80 06/18/90 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/18/80 06/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/19/80 00/10/80 000	02/08/88 03/14/88 04/04/88 05/09/88 05/30/88 05/30/88 05/30/88 05/12/88 01/17/88 11/114/88 01/10/89 03/06/89 03/06/89 03/06/89 03/06/89 03/06/89 03/17/89 03/27/89
Well ID	BKG_20 BKG_20 BKG_20	W W W W W W W W W W W W W W W W W W W	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Zn (I/gm)	98 44 79	2.4.0 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.0000000000	0.05 0.02 0.02 0.03 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05
Si (mg/l)	26 33 33	N ⁻ 8 ⁻ 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	N N N N N N N N N N N N N N N N N N N
SO4 (mg/l)	2995 1872 2997	OND ON NO 288 853 868 873 875 875 875 875 875 875 875 875 875 875	480 700 700 700 700 700 700 700 700 700 7
S S	989 637 1028	840 840 733 733 755 755 755 755 755 755 755 755	460 280 290 330 335 117 117 117 117 117 117 117 117 117 11
Pb (I/bm)	0.22 0.00 0.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Ni (Ing/I)	0.45 0.20 0.37	N N N N N N N N N N N N N N N N N N N	U N N N N N N N N N N N N N
Na (mg/l)	32 24 28	855588887528888888888888888888888888888	8 2 8 8 8 8 8 2 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Mn (I/gm)	00 4 0	4.9.8.9.4.9.8.4.4.4.9.4.9.4.4.7.9.4.7.9.4.7.9.4.7.9.4.7.9.4.7.4.4.7.8.9.4.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	00444400++++04400 0144400+80000044400 0
(I/gm)	344 222 283	66528886794%8485684907%86888222 %	556 885747885288865460 885747888888890 865747888888890 865747888888890 86574788888888 8657478 86578888 8657478 86578888 8657478 86578888 8657478 86578888 8657478 86578888 8657478 86578888 8657478 86578888 865778 8657888 865778 8657888 8657888 86578 86578 865788 86578 86
K (I/gm)	15 11 16	 	4 ぷ ぷ 4 4 0 ぷ 0 0 0 0 8 ぷ ぷ ぷ ぷ ぷ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fe (mg/l)	4 - 4 - 2 - 2	8. 8. 9. 9. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	2000 2000 2000 2000 2000 2000 2000 200
Cu (mg/l)	0.33 0.12 0.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
CI (mg/l)		$\overset{\kappa}{\bullet} \overset{\sigma}{\bullet} \overset{\sigma}$	9999999999999999 99999999999999999999
Date Sampled	03/12/90 04/30/90 06/18/90	02/08/88 03/14/88 03/14/88 05/09/88 05/09/88 05/09/88 05/20/88 07/25/88 09/19/88 01/17/88 11/17/88 01/109/89 03/106/89 03/12/89 05/22/89 05/22/89 05/22/89 05/22/89 05/22/89 05/22/89 05/22/89 05/12/90 06/18/90 06/18/90 06/18/90	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/30/88 05/30/88 05/30/88 05/30/88 05/22/88 01/17/88 11/14/88 01/17/88 01/17/88 03/06/89 03/06/89 05/22/89
Well ID	M M M M M M M M M M M M M M M M M M M	๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	M M M M M M M M M M M M M M M M M M M

Ξ,

Representation of the second sec

Zn (Mg/l)	UN 0.23 0.19 0.11 0.27 0.09	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.06 0.04 0.00 0.05 0.05 0.33 0.33 0.33 0.33 0.33
Si (mg/l)	N 13:1 13:1 10:7 13:3 13:3 13:3	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.2 13.3 13.3 15.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
SO4 (mg/l)	ND 549 519 998 998 1127 1127	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 863 863 792 753 753 753 775 775 775 775 775 775 775
(l/ɓu)	ND 222 348 359 359 475	160 330 330 330 330 332 333 332 332 332 33	274 248 236 236 236 243 372 313 313 313 313
dH (I/gm)	UD 0.07 0.09 0.29 0.30 70.0 101	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.03 0.03
Ni (mg/l)	UN 00.0 00.0 00.0 00.0 00.0 00.0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Na (mg/l)	ND 18 23 24 88 84 24 88 84 24 88 84 24 24 24 24 24 24 24 24 24 24 24 24 24	\$	25 24 12 28 28 29 49 49 49 49 49 49 49 49 49 49 49 49 49
nM (Mg/l)	N N N N N N N N N N N N N N N N N N N	25.0 25.0 25.0 25.0 25.1 25.1 25.1 25.2 25.2 25.2 25.2 25.2	21.3 17.9 17.9 25.4 20.6 19.6 20.6 13.8
Mg (I/gm)	0 0 0 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86885688888666688888888888888888888888	6 8 8 8 8 8 7 8 7 8 7 8 7 8 7 8 7 6 6 8 8 8 7 6 6 8 8 8 8
K (mg/l)	N N - K S S S S S S S S S S S S S S S S S S	※ 6 6 6 7 8 6 7 7 6 6 6 6 6 6 7 8 7 7 6 7 7 6 6 6 7 7 8 6 7 7 7 6 6 6 6	2 0 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fe (mg/l)	ND 17.7 6.3 23.5 20.3 20.3 20.3 20.3 20.3	4.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2 60 2 15 2 15 2 15 2 25 2 25 2 25 2 25 2 25
Cu (mg/l)	ND 0.23 0.08 0.19 0.07 0.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Ci (mg/l)	N N N N N N N N N N N N N N N N N N N	888888888888888888888888888888888888888	22222222222222
Date Sampled	06/27/89 08/21/89 10/30/89 03/12/90 04/30/90 06/18/90 06/18/90	02/08/88 03/14/88 04/04/88 05/09/88 05/30/88 05/30/88 05/30/88 05/30/88 05/30/88 05/19/88 11/11/4/88 11/11/4/88 03/12/98 05/12/89 05/12/80 00/12/80 00/12/80 00/12/80 00/12/80 00/12/80 00/12/80 00/12/80	05/30/88 06/30/88 06/20/88 07/25/88 08/22/88 09/19/88 10/17/88 01/09/89 03/06/89 03/06/89
Well ID	M 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M2_6 M2_6 M2_6 M2_6 M2_6 M2_6 M2_6 M2_6

ł,

Zn (l/gm)	0.24 ND 0.27 0.27 0.14 0.15 0.09	0.00 0.03 0.03 0.00 0.00 0.03 0.03 0.03	0.00 0.03 0.046 0.03 0.03 0.046 0.03 0.046 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0
Si (mg/l)	12:0 ND 8:4 15:2 15:2 13:0	N 8 10 10 10 10 10 10 10 10 10 10 10 10 10	N N 0.111.0 0.111.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0 0.0010.0000.00000000
SO4 (mg/l)	834 858 1014 204 204 204	N N N N N N N N N N N N N N N N N N N	790 790 768 382 387 387 387 387 387 387 387 387 387 387
S S	227 ND 354 358 308 308 338	55 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58	7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20
dP (Ingm)	0.08 N D N D 0.07 0.08 0.08 0.08 0.08	0.00 0.11 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Ni (Ing/I)	0.02 N N 0.01 0.00 0.00 0.02 0.02	D D D D D D D D D D D D D D	N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Na (mg/l)	22 2 2 6 6 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74 45 33 25 D D S 88 93 33 4 4 4 5 5 8 3 3 3 4 4 4 5 5 5 5 3 3 3 4 4 4 5 5 5 5	2, 2, 2, 2, 2, 8, 8, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
Mn (mg/l)	17.8 ND 53.5 24.1 28.2 28.2 28.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 4 7 0 8 7 7 8 0 8 8 0 8 8 0 7 8 0 8 7 7 0 8 7 7 0 8 7 7 7 7
(I/gm)	76 ND 226 42 96 98	4 1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 8 2 2 8 3 3 3 4 8 9 8 8 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8
K (mg/l)	0 N N C C 4 0 0 0 D D 7 C C 4 0 0 7 C 7 C 4 4 0 0	4 4 5 8 8 9 0 0 7 1 7 1 9 7 7 9 8 7 7 7 9 8 7 7 9 9 7 7 9 8 7 7 7 9 9 7 7 7 9 7 7 7 7	2 2 2 2 4 7 2 8 2 7 2 7 2 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7
Fe (mg/l)	4.48 ND ND 1.90 1.350 0.34 0.47	0.66 2.30 2.30 2.40 1.44 1.44 1.13 2.24 1.48 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.1	5.50 1.50 4.10 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.3
Cu (mg/l)	0.06 ND 0.20 0.11 0.06 0.06 0.06	0.00 0.15 0.01 0.00 0.00 0.00 0.00 0.00	0.00 0.12 0.12 0.00 0.00 0.00 0.00 0.00
CI (mg/l)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NN NN NN NN NN NN NN NN NN NN NN NN NN	
Date Sampled	05/22/89 06/06/89 06/27/89 08/21/89 10/30/89 03/12/90 04/30/90 06/18/90	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/25/88 05/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/27/89 07/17/88 01/09/89 02/06/89 02/08/89 05/189 06/12/89 00/12/89 00/10	02/08/88 03/14/88 04/04/88 04/04/88 05/30/88 05/30/88 05/30/88 05/30/88 05/30/88 05/30/88 01/17/88 10/17/88 11/14/88 03/06/89 03/06/89
Well ID	M M M M M M M M M M M M M M M M M M M	44444444444444444444444444444444444444	M3_10 M3_10

(Ilgm)	0.00 0.00 0.19 0.00 0.17 0.00 0.17 0.00 0.17	0.0.0 2.5.00 2.5.00 2.5.00 2.5.00 2.5.00 2.5.0000000000	0.39 0.52 0.30	0.06 0.08 0.09 0.03 0.05 0.07 0.03 0.03 0.03 0.03
Si (mg/l)	0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	N 2200 0.0210000000000	17.6 16.8 14.6	ND 16.0 17.5 15.5 11.8 15.6 11.8 15.6
SO4 (mg/l)	378 292 292 293 293 293 294 272 200 200 200 200 200 200 200 200 200	N N N N N N N N N N N N N N N N N N N	2100 1960 2016	ND ND ND ND ND ND ND ND ND ND ND ND ND N
S (I/gri)	45 200 25 200 25 200 25 25 200 25 25 25 200 25 25 25 25 25 25 25 25 25 25 25 25 25	560 910 910 910 910 910 910 1076 1076 1076 1076 1076 1076 1076 10	741 904 721	490 800 527 689 725 725 2042 776
dq (l/gm)	0.05 0.04 0.07 0.00 0.05 0.07 0.07 0.07	0.0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.05 0.39 0.01	0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02
Ni (mg/l)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.04 0.04	N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Na (mg/l)	88888888888888888888888888888888888888	8	27 27	₽ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
(l/ɓɯ)	1.1.0 0.4.1.1.8 0.2.3.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.3 0.2.40000000000	0.60 3.20 3.20 3.20 5.55 7.55 7.55 7.55 7.55 7.55 7.55 7.5	0.22 0.50 0.25	0.92 1.10 1.11 1.14 1.13 1.03 0.69 0.69 0.78 0.78
(I/Gm)	8 8 0 0 8 8 8 8 7 0 8 8 9 0 0 8 8 8 8 7 0	200 210 220 221 221 222 223 225 225 225 225 225 225 225 225	206 250 228	150 150 169 169 171 171 173 173 173 173 173 173 173 173
K (Ingri)	2.2.3 2.2.0 2.2.0 2.2.0 2.2.0 0 7.0 0 7.0 0 7.0	(1) 2013 2013 2015 20	10.6 11.3 8.9	2.00 0.92 0.92 1.80 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45
Fe (mg/l)	1.57 2.19 ND ND 2.95 2.84 1.63 1.63 ND	0.03 0.22 0.22 0.25 0.25 0.25 0.25 0.25 0.25	0.02 0.28 0.54	5.40 3.10 0.11 0.23 0.23 0.37 2.74
Cu (mg/l)	0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00	0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.00	0.08 0.21 0.09	0.00 0.20 0.17 0.01 0.00 0.00 0.03 0.03 0.03 0.03 0.03
CI (mg/l)	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	O N N	
Date Sampled	04/10/89 05/22/89 06/06/89 06/27/89 08/21/89 03/12/90 04/30/90 06/18/90 06/18/90	02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/25/88 06/20/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/89 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/88 06/27/89 00/27/89 00/27/80 00/27/80 00/27/80 00/27/80 00/27/80 00/200000000000000000000000000000000	06/18/90 03/11/91 06/03/91	02/08/88 03/14/88 04/16/88 04/18/88 05/09/88 05/30/88 05/20/88 05/20/88 05/22/88 03/19/88 03/19/88
Well ID	M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10 M3_10	Ϫ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ	M4 M4 5 5	M M M M M M M M M M M M M M M M M M M

Zn (Mg/l)	0.19 0.19 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.03 0.00 0.75 0.75 0.00 0.02
Si (mg/l)	22 4.64 4.65 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ND 21.0 21.0 21.0 21.0 20.0 20.0 20.0 20.0	N 16 16 16 16 16 16 16 16 16 16 16 16 16
S04 (mg/l)	1876 2070 1669 1742 509 ND 1737 1737 1837 1837 1837 1921	ND ND ND ND ND ND ND ND ND ND ND 1973 1963 1702 1702 1702 1702 1702 1702 1702 1702	ND ND ND ND ND ND ND ND ND ND ND ND ND N
S (mg/l)	741 551 555 645 722 865 700 700 700 625 653 653	600 557 515 515 515 515 755 823 823 823 823 755 880 717 723 823 537 537 537 537 537 537 537 537 557 55	360 440 420 577 508 406 508 428
dH (l/gm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(I/gm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	UN 00.0 00.0 00.0 00.0 00.0 0 0 0 0 0 0 0	ND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Na (mg/l)	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7400 7470 7470 7470 7470 7470 7470 7470	79 86 86 50 86 73 73
Mn (l/gn)	0.83 0.88 0.89 0.89 0.89 0.88 0.75 0.654 0.654 0.654 0.654	0.24 0.74 0.74 0.75 0.95 1.13 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.10 1.10 0.57 0.24 0.31 0.22
gM (l/gm)	282 773 773 773 773 773 775 775 775 775 775	88 88 88 7 2 2 3 3 2 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8	100 130 160 173 173 115
K (I/gm)	2 2 8 2 2 2 8 2 2 2 8 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	7.40 3.20 3.20 3.20 3.20 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	5.40 3.580 4.52 5.38 4.52 4.52 4.52 4.47
Fe (mg/l)	2.78 1.16 3.04 1.12 ND 1.15 0.15 1.15 0.00 0.97 1.25 2.1	2 4 0 0 2 4 2 0 0 4 1 0 0 0 4 8 0 0 0 4 8 0 0 0 4 9 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0	0.30 0.37 0.39 0.39 0.17 0.09 0.09 0.67 2.95 2
Cu (mg/l)	0.03 0.03 0.00 0.00 0.12 0.12 0.01 0.12 0.07 70.02 0.02 70.02 0.02 70.02 0.02	0.00 0.23 0.02 0.02 0.02 0.02 0.02 0.02	0,00 0,17 0,18 0,02 0,05 0,00 0,20
CI (mg/l)	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Date Sampled	11/14/88 01/09/89 03/06/89 06/06/89 06/06/89 06/06/89 06/27/89 08/27/89 08/27/89 08/17/89 08/17/90 06/18/90 06/18/90	02/08/88 03/14/88 04/18/88 05/09/88 05/09/88 05/30/88 05/20/88 05/22/88 03/125/88 03/125/88 09/19/88 01/09/89 03/12/89 05/22/89 05/27/89 05/17/91 05/27/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 02/17/89 05/27/89 02/17/89 05/27/89 05/27/89 05/27/89 02/17/99 05/27/89 05/27/89 02/17/99 02/17/99 02/17/99 00/11/77 00/17/99 00/17/99 00/11/77 00/17/99 00/11/77 00/17/99 00/11/77 00/11/77 00/17/99 00/11/77 00/17/99 00/10/100 00/10/100 00/10/100 00/10/100 00/100000000	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/30/88 05/30/88 05/20/88
Well ID	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M5_4 M5_4 M5_4 M5_4 M5_4 M5_4 M5_4 M5_4

(I/gm)	0.01 0.06 0.18	0.02	0.08 0.06	0 0 2	0.20	06.0	0.05	0.13 0.09 0.05		0.04	50 O	20.0	0.08	0.01	0.08		0.10	0.00	0.16	10.03	0.16	0.08		014	0.24	0.08	0.07 0.41		0.00	0.00	0.37
Si (mg/l)	15.5 12.8 17.9	16.6 18.3	13.2 14.0	Q Q	21.6	10.9	14.1	11.6 11.5 10.3		n ç	14.0	0.11	8 4	16.2	14.5	110	12.0	12.4	16.5 10.5	16.3	11.6	13.8		8.7	11.4	13.7	12.6 8.6		Z	6.0 7 3	6.4
SO4 (mg/l)	1134 962 835 894	1045 932	1264 1882	a a	942 805	1173	1027	1184 969				202	Q	QN	UN 970	294 294	239	219	243 243	201	234	2 2 J	661	205	190	QN	208 186	CN	2	230 N 0	Q
s (I/gm)	1212 ? 296 341 262	329 383	475	O N N	331 304	395	370	376 376 352	ŝ	88	8 Q	5 8 7	58	100	88	202 202	94	8 2	90 98	162	ខ្លួន	85	<u>6</u> 2	67	71	8 R	/8 55	83	23	56 56	62
dq (l/gm)	0.0 0.0 0.0 0.0 0.0	0.03 0.12 0.23	0.06	n n	0.01 0.42	0.20	0.06	0.0 0.0			0.05	0.02	0.04	0.00	0.0	0.04	0.06	0.01	0.02 0.02	0.07	0.11	0.03	0.06	0.17	0.25	0.06	0.33	QN	00.0	0.02 0.04	0.03
Ni (I/gm)	0.00 0.00 0.00 0.00	0.02		2 Q	00.0	0.00	0.01	0.05			0.00	0.00	0.01	0.00	000	0.00	0.00	0.01 20.0	0.0	00.0	0.00	000 000	0.0	0.00	0.00	0.02	0.02	QN	DN 00	0.00	0.00
Na (mg/l)	44 35 87 87	8 4 3 8 9 1	54		33 S2	34	49 8	8 22 3	140	140	140	<u> 3</u> 3	71	<u>5</u>	711 87	8	6 5	91	<u>8</u> 8	108	113		46	84	84	91 07	91 72	107	140	140	120
Mn (l/gm)	0.16 0.04 0.02 0.04	0.04 0.32 0.32	0.06	2 Q	0.16 0.12	0.34	0.21 0.41	0.08	0 U	0.08	0.09	0.19	0.07	0.13	0.13	0.00	0.07		0.08	0.58 ?	0.07	39	0.28	0.08	0.15		0.20	0.04	0.02	0.02 0.02	0.06
Mg (I/gm)	115 91 57	116 120 25	2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 1 2 1 2	Q	213 96	112	112 99	105 99	00	0	1	10	Q	55	ე თ	7	100	53 2		46 ?	- 4	2 9	14	2	~ ^		- ~	1.7	0.6	0.0	0.7
K (I/gm)	3.18 4.06 7.20 2.60	5.00 4.40 4 90	67.4 CN	2 Q	4.00 3.60	3.70	2.70 3.10	3.50 1.30	2.10	0.96	0.74	0.53	0.19	0.37	0.54	0.14	0.33	2.90	0.80	1.20	0.00	ON N	0.30	00.0	0.20	0.00 0 20	0.30	0.25	0.29	0.09	0.22
Fe (mg/l)	0.03 0.03 1.33 1.06	0.29 0.71 1.38	0.59 UN		1.60 0.19	0.50	0.3Z 0.67	0.29 0.50	0.05	0.00	0.09	6.50 ?	0.00	0.05 1.56	0.72	0.00	0.38	1.64	0.33	58.54 ?	0.78 10.24	QN	0.72	0.06	2.35	0.07	0.28	1.70	0.00	0.04	0.92
Cu (mg/l)	0.02 0.10 0.01	0.03 0.00 0.00	0.07 CIN		0.25 0.13	0.19	0.0 0.06	0.00 0.06	00.0	00.00	0.02	0.12	0.00	0.0	0.0	0.07	0.15	0.04	0.02	0.09	0.08 0.08	Q	0.17	0.09	0.19 0.0	0.0	0.16	0.04	0.00	0.00	0.08
CI (mg/l)				22	10.64	Q A	QQ	ND 29.77	QN	QN	QN	Q I			20	8		2 Q	QN	2		QN	QN	1.97		0 1	2.08	QN	ON N	22	QN
Date Sampled	08/22/88 09/19/88 10/17/88 11/14/88	01/09/89 03/06/89 04/10/89	05/22/89 06/06/89	06/27/89	U8/21/89 10/30/89	03/12/90	06/18/90	03/11/91 06/03/91	02/08/88	03/14/88	04/04/88	04/18/88	05/09/88	88/02/c0	07/25/88	08/22/88	10/17/88	11/14/88	01/09/89	03/06/89	05/22/89	06/27/89	08/21/89	10/30/89	08/71/20	06/18/90	03/11/91	12/09/87	02/08/88 03/14/88	04/04/88	04/18/88
Well ID	M5_4 M5_4 M5_4	M5_4 M5_4 M5_4	M5 4	M5_4	M5_4	M5_4	M5_4	M5_4 M5_4	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_23	M5_53	M5_53 M5_53	M5_53	M5_53

۰.

•...

Zn (mg/l)	0.00 0.00 0.05 0.05 0.05 0.04 0.00 0.05 0.02 0.02 0.02 0.02 0.02 0.02	4 6 7 7 7 7 7 7 7 7
Sí (hg/l)	4 ~ ~ ⑤ ⑤ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ ῦ	N N 0.05 0.
SO4 (mg/l)	N N N N N N N N N N N N N N N N N N N	88829999999999999999999999999999999999
S S	₭ ® 였 ₨ ₻ ® ₨ ₨ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₩ ₽ ₩ ₽ ₨ ₽ ₨ ~	230 270 270 270 270 270 290 360 360 360 360 360 360 360 360 360 36
dq (l/gm)	0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02	ND 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
Ni (Ingm)	0.000000000000000000000000000000000000	NN 010 010 010 010 010 010 010 0
Na (mg/l)	82222222222222222222222222222222222222	<u>%707770000004400000 %680</u>
uM (Ngm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
(I/ɓɯ)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87 88 87 97 97 97 97 97 97 97 97 97 97 97 97 97
K (I/gm)	0.00 0.17 0.17 0.17 0.00 0.10 0.00 0.00	
Fe (mg/l)	0.00 0.07 0.58 0.58 0.58 0.05 0.72 0.54 0.54 0.54 0.55 0.16 0.36 0.16 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.3	8277688628882232824 822888 827788888223288862888824 822888
Cu (mg/l)	ND 0.00 0.00 ND 0.00 0.07 ND 0.00 0.07 ND 0.00 0.07 ND 0.00 0.05 ND 0.00 0.34 ND 0.00 0.34 ND 0.00 0.34 ND 0.00 0.36 ND 0.00 0.36 ND 0.00 0.36 ND ND 0.19 0.36 1.15 0.19 0.36 1.15 0.07 0.36 1.15 0.07 0.36 ND ND 0.07 0.36 ND 0.07 0.36 0.36 ND 0.07 0.36 0.36 ND 0.00 0.36 0.36 ND	0.075 0.22 0.22 0.24 11.0 11.0 11.0 12.0 11.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13
CI (mg/l)	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} & & \\$
Date Sampled	05/09/88 05/30/88 06/20/88 09/19/88 10/17/88 11/14/88 01/09/89 05/22/89 05/22/89 05/22/89 05/22/89 05/11/89 05/11/89 05/11/91 05/11/91 05/11/91	12/09/87 02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/19/88 05/12/88 09/19/88 09/19/88 01/11/89 01/11/89 01/11/89 01/11/89 01/12/90 01/11/89 01/09/89 03/12/90 04/04/88 03/12/90 04/04/88
Well ID	M5-53 M5-53	

(l/ɓm)	38.00 60.00 57.00 57.00 37.000 37.000 37.000 37.0000000000	200.00 610.00 770.00 810.00 810.00 1500.00 1500.00 1600.00 3000.00 3000.00 366.00 966.00 366.00 1200.00 1200.00 1200.00 11000.00 11000.00 11000.00 11000.00 11000.00	150 130 240 270 270 1100 1200 1200 1200 1200 1200
Si (mg/l)	44 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Q Q X X X X X 8 8 8 8 8 8 9 7 7 7 8 8 8 8 8 8 8 8 8 8	ON 05 00 00 00 00 00 00 00 00 00 00 00 00
SO4 (I/g/l)	2000 000 000 000 000 000 000 000 000 00	UN U	22222222222222222
S (I/gm)	1900 2200 2800 3400 3200 2200 1700 2300 2300 2300 2300 2300 2500 2500 25	7500 5900 6800 9600 14000 13000 11000 16000 16000 17000 32000 17000 17000 12000 12000 12000 12000	3200 2800 3100 3800 5700 5700 8800 2600 2800 2700 2700 2700 2700 2700 2700 27
(I/ɓɯ)	0.05 0.24 0.15 0.97 0.60 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.1	ND 3.60 2.90 2.90 2.90 3.50 5.40 5.50 5.50 5.50 5.50 5.50 5.50 5	ND 0.1 0.37 0.25 0.25 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Ni (I/gr/)	0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00	O O O O O O O O O O O O O O O O O O O	ND ND 0.34 0.57 0.57 0.220 0.220 0.07 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
Na (mg/l)	\$ \$ \$ \$ 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5 7 7 8 8 8 8 9 8 9 8 9 8 9 8 7 8 8 8 8 9 8 9	877865678667 8797
nM (l/gm)	0 0 7 7 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0	8 9 8 7 6 9 4 6 6 7 8 9 7 8 9 4 6 6 7 8 9	80000540000 %
Мg (I/gm)	380 380 380 380 380 380 380 380 380 380	200 910 910 2500 2500 2500 2500 2700 2100 2100 2100 2100 2100 2100 21	200 300 300 460 460 420 510 30 30 30 30 30 30 30 30 30 30 30 30 30
K (I/gm)	で、は、オ マ よ こ の ア こ で こ う こ て つ き う て こ う こ こ こ こ こ う こ こ こ ら う う こ こ ら ら う う う う	58. 53.0 69.0 69.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75	4.5 7.1 7.5 7.6 8.0 1.3 4.0 4.0 4.7 2 2 3 3 3 3 3 4.0 4.0 4.0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fe (mg/l)	720 860 940 920 900 900 910 920 920 920 920	950 7300 7500 7500 7500 12000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000	950 1800 1800 2300 2500 2500 2500 2100 2100 3000 3000 3000 3000 3000 30
Cu (mg/l)	22222222222222222222222222222222222222	6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	160 240 240 270 2210 2210 130 2210 130 2210 130 2210 130 2210
CI (mg/l)	0 0 0 0 0 0 8 4 0 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	
Date Sampled	04/18/88 05/09/88 06/20/88 07/25/88 09/19/88 09/19/89 01/09/89 04/11/89 04/11/89 04/11/89 01/09/89 04/11/89 03/12/90 04/30/90	12/09/87 02/08/88 03/14/88 04/04/88 05/12/88 05/20/88 05/20/88 07/25/88 07/25/88 03/19/89 03/19/89 03/11/89 03/11/89 03/12/90 03/12/90 03/12/90 03/12/90	12/09/87 02/08/88 04/04/88 04/18/88 04/18/88 05/09/88 05/09/88 05/20/88 05/20/88 05/25/88 06/20/88 06/20/88 06/20/88 06/20/88 06/20/88 07/25/88 07/25/88 07/25/88 07/25/88
Well ID	88888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	824 824 824 824 824 824 824 824 824 824

:

nZ (Ngm)	88 87 88 88 88 88 88 88 88 88 88 88 88 8	8 8 7 2 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	64 75 00 88 8 7 8 7 8 9 9 9 7 6 6 7 6 7 6 7 6 8 8 8 7 8 7 8 9 9 9 7 6 6 7 6	660
Si (mg/l)	77 86 76 110 78 78 85 80	O O X Z X X X X X X X X X X X X X X X X	99988887788888888888888888888888888888	DN
SO4 (mg/l)	7400 ND 1500 ? 7900 7500 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	N N N N N N N N N N N N N N N N N N N	QN
s (Ingrl)	1900 2100 2200 2200 2200 2500 2300	940 830 860 860 860 860 1100 1100 1100 2500 2500 22900 22900 22900 2300 3300 3300 3300	1100 970 1200 1400 1400 1200 1200 1200 1200 120	4800
dq (Ingn)	0.44 0.89 0.74 0.31 0.32 0.32 0.11 0.11	ND 0.28 0.21 0.21 0.21 0.21 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	N N N N N N N N N N N N N N N N N N N	0.89
Ni (mg/l)	0.66 0.24 0.33 0.33 0.33 0.35 0.35 0.35	N N 22:0 25:0 25:0 25:0 25:0 25:0 25:0 25:0	ND 0.17 0.28 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03	DN
Na (mg/l)	000000460	888888888888888888888888888888888888888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28
Mn (Ingn)	v o o o o o o o o o	4 2 2 0 0 2 2 2 2 2 2 4 4 4 4 4 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	110
Mg (hgm)	210 240 230 230 220 250 250 250	100 140 220 550 550 550 550 550 550 550 550 55	8 2 2 3 2 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3	780
(Ilgm)	5.9 0.1 4 4 0 0.7 2 8 0 7 2 8 0 7 2 8	4 0 0 4 6 4 6 4 6 8 6 7 - 4 6 0 6 8 0 0 0 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 % 4 % 4 % 0 % 0 % 0 % % % % % % % % %	49.0
Fe (mg/l)	1400 1500 1500 1300 1500 1700	240 280 310 340 340 970 970 980 1400 1400 1400 1700 1700	450 740 890 1100 890 570 570 570 570 570 570 570 570 570 57	7600
Cu (mg/l)	88 96 70 70 70 70 70 70 70 70 70 70 70 70 70	888888888888888888888888888888888888888	88 88 48 88 88 88 88 49 88 88 88 88 88 88 88 88 88 88 88 88 88	7
CI (mg/l)	8 0 0 2 2 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Q
Date Sampled	01/09/89 03/06/89 04/11/89 06/06/89 08/21/89 08/21/89 03/12/90 03/12/90	12/09/87 02/08/88 03/14/88 04/04/88 05/09/88 05/09/88 05/09/88 05/09/88 07/25/88 07/25/88 07/25/88 03/12/98 03/129/89 03/129/89 03/129/89 03/129/89	12/09/87 02/08/88 02/08/88 04/14/88 04/14/88 05/09/88 05/09/88 05/09/88 05/05/89 03/12/89 03/12/90 03/12/90 03/12/90 03/12/90	02/08/88
Well ID	82-4 82-4 82-4 82-4 82-4 82-4 82-4 82-4	9 9 9 9 9 9 9 9 9 9 9 9 9 9	82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16 82-16	P4

.

ίη :

Zn (mg/l)	600 560 1300	1000 960 1000 950 950 950	900 900 720 830	500 380 380 350 350 350 770 770 770 560 890 890 890 890 890 890 890 890 730 730 730	4500 4300 2700 2700 4200 4100
Si (hg/l)	28 8 9 9 4 9 28 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 9 9 8 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9	8 3 7 7 8 8 3 7 8 9	D 2 2 2 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9	52 57 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
SO4 (mg/l)		67000 ? ND 28000 27000		2330 2330 2330 2330 2330 2330 2330 2330	0000 00000 0000 0000 000 000 000 000 0
(l/ɓɯ)	6000 4000 6200 8800	11000 10000 9000 7100 7100	8400 7300 6500 7600	4600 4500 4500 7000 9700 9700 8400 7100 8400 7100 8100 7300 8100 7300 8200 8300 7300 8500 7100 8500 7100	25000 25000 27000 27000 27000 27000 27000 25000
d (I/gm)	1.60 3.20 2.10 2.10	9 00 00 00 00 00 00 00 00 00 00 00 00 00	2.70 19.00 ? 1.50		6.10 7.10 2.90 6.70 9.40 9.40 9.40
Ni (I/gm)	1.10 2.60 2.20 2.20	2,2,2,1,2,2,2,0 1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	1.50 2.50 2.10	N 0.02 0.0	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
Na (mg/l)	2 2 2 3 3 4 S	- 94 - 08 - 64 - 64 - 68 - 64 - 64 - 64	5 7 3 3 7 4 5 7 4 0 7 4 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	55866666666666666666666666666666666666	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
um (I/gm)	100 140 220 220 220 220 220	200 54 190 180 180	200 180 180	x x 4 x 2 x 4 4 8 x 8 x 8 x 8 x 4 8 x 8 x 8 x 8 x	3 10 3 10 3 20 3 20 2 20 2 20 2 20 2 20 2 20 2 2
(I/ɓɯ)	690 770 890 2000 1700	1700 1700 1700 1700	1500 1500 1400	580 620 620 620 620 1400 1100 1100 1200 1100 1200 1200 12	5100 3900 5100 5000 5000
K (I/gm)	52.0 72.0 61.0 93.0 77.0	62.0 33.0 100.0 63.0 63.0	120.0 68.0 56.0 76.0	21.0 21.0 23.0 23.0 23.0 23.0 20.0 20.0 20.0 20	80.0 80.0 80.0 80.0 80.0 91.0 88.0 88.0 21.0 2
Fe (mg/l)	6600 5200 6400 11000	9500 9500 8800 8200 9800 9800	9000 8100 7200 8300	5800 3700 5700 5100 10000 110000 9300 9300 7400 7200 6600 11000 6600 7200 6600 7200 7200 5700 7200	26000 26000 9800 30000 31000 31000
Cu (mg/l)	ი ი ი ი ი .	ი ი ი - კ <u>ი</u> ი ი ი ი - კ ე <u>ი</u>	7 T T T T T T T T T T T T T T T T T T T	250 250 250 250 250 250 250 250 250 250	2228886666
Ci (mg/l)	2222222	<u>5 5 5 5 5 % 8 5</u>		8888888888 ² 28888888888888888888888888	
Date Sampled	03/14/88 04/04/88 04/18/88 05/09/88 05/30/88 07/25/88	08/12/88 10/17/88 11/14/88 01/09/89 03/06/89 05/22/89	08/21/89 10/29/89 03/12/90 04/30/90	02/08/88 03/14/88 04/04/88 04/18/88 05/09/88 05/309/88 05/308/88 07/25/88 01/09/89 01/09/89 03/12/90 00/100/100 00/1000000000000000000000	05/30/88 06/20/88 07/25/88 08/22/88 10/17/88 11/14/88 01/09/89
Well ID	с с с с с 4 4 4 4 4 4		P4 P4 P4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zn (l/gm)	3100 4300 3800 3500 4400	ж 85 б ж 8 8 8 8 8 8 9 8 9 8 9 8 8 8 8 8 8 8 8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.09 0.09
Si (mg/l)	~ 8 8 ° 8 7 8	0 8 2 0 7 7 8 2 8 C 8 O 9 2 7 8 0 0 2 8 7 0 0 2 8 7 8 0 0 2 8 7 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D x x z x 8 x x z x z x x x x x x x x x x	23 38 ND
SO4 (mg/l)	0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		888888 <u>6</u> 888888868688888888888888888888	a a a
S (Ingri)	19000 25000 25000 23000 23000 23000	920 2200 11200 1769 816 816 816 816 822 881 881 881 881	310 490 320 320 320 320 550 550 340 370 550 550 340 340 370 550 550 340 370 550 340 370 550 370 570 370 570 370 570 370 570 570 570 570 570 570 570 570 570 5	350 300 300
dPb (ľ)gn)	5.30 2.30 7.30 12.00 0.1 0.1	0.012 0.270 0.090 0.090 0.040 0.020 0.020 0.020 0.020 0.020 0.040 0.040 0.040 0.040	$\begin{array}{c} 0.0\\ 0.05\\ $	0.05 0.11 0.05
(Ingri)	3.10 8.00 8.370 8.410 6.50	ND 0.170 0.190 0.120 0.375 0.375 0.156 0.375 0.370 0.370 0.310 0.310 0.120 0.120 0.120 0.120	ND 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ND 0.05 0.05
Na (mg/l)	0 8 0 8 % 0	85255555555555555555555555555555555555	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	33 40
Mn (l/gm)	230 250 300 250 250 250 250 250 250 250 250 250 2	211.0 21.0 20.0 20.0 20.0 20.0 20.0 20.0	8,01 8,07 9,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0.7 1.0 0.6
Mg (I/gm)	3900 4900 4700 5300 5300	283 550 517 517 517 517 517 517 517 517 517 517	8, 2, 2, 8, 2, 2, 2, 4, 2, 4, 2, 2, 8, 2, 2, 2, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	90 180 110
K (hg/l)	36.0 91.0 78.0 63.0 71.0	16.0 17.3 17.3 17.5 ND ND 23.2 23.2 23.0 20.0 23.0 20.0 23.0	8 8 9 9 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3.0 1.8 1.6
Fe (mg/l)	24000 31000 29000 27000 34000 34000	1000 1200 527 543 535 535 535 535 535 535 535 535 535	150 160 110 110 110 110 110 110 110 110 11	ري ئ
Cu (mg/l)	16 17 22 61 61 67 83 of or belov	0.48 0.22 0.23 0.30 0.30 0.22 0.22 0.22 0.22	0.01 0.18 0.18 0.03 0.03 0.03 0.15 0.03 0.13 0.23 0.23 0.23 0.23 0.23	0.01 0.15 0.02
CI (mg/l)	170 16 24000 ND 17 31000 ND 22 29000 ND 60 29000 ND 61 27000 ND 67 34000 NS 67 34000	<u> </u>	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	QN QN QN
Date Sampled	03/06/89 05/22/89 08/21/89 10/29/89 03/12/90 04/30/90	02/08/88 03/14/88 04/04/88 04/18/88 05/03/88 05/20/88 06/20/88 06/20/88 06/10/89 06/27/89 06/10/90 06/10/90	02/08/88 03/14/88 05/09/88 05/09/88 05/30/88 05/30/88 05/30/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 08/22/89 03/12/90 03/12/90 03/12/90	02/08/88 03/14/88 04/04/88
Well ID	8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222222222222222222222222222222222222	53 B3

.

- - ----

1

(l/gm)	3.40 0.12 0.14	0.07 0.36	0.07	18.00	0.03	0.20	0.00	0.09	0.13	0.00	0.16	7 66			2.02	10.1 77	00-1 1 A A	19 19 19	<u>8</u> .1	7 56	5.26	4 57	3.34	5.84	5.38	15.80	6.47	0.17	0.15	0.11	1.77	3.40	QN	13.20	14.38
Si (mg/l)	8828	ઝ ઝ	58 79	57	26	Я 8	7 2	n g	a a	3 8	58	47	2 0	5 4	οų	<u></u>	2 7	<u>+</u> +	16	УC	5	2	19	20	2	23	23	24	თ	19	17	18	19	8	19
SO4 (mg/l)	222	1600 1600	ON ON	2 Z	920	QN					ND			1065	2500	2425	4765	3716	3822	ũN	5302	5021	5423	6682	8513	8291	8044	QN	2102	1343	1574	1419	2893	2740	2392
S (mg/l)	250 290 290	320 520	930 320	430	290	280	280	300	290	310	300	617	888	50	200 868	882	1416	1289	1282	1142	1732	1699	1851	2333	2566	2749	2773	227	345	453	538	510	954	919	638
(l/gm)	0.05 0.05 6.50	0.13	0.05	0.08	0.05	0.18	0.05	0.05	0.06	0.24	0.07	500	0.43	200		0.08	0.06	000	0.02	0.08	0.88	0.05	0.06	0.14	0.04	0.10	0.16	0.05	0.26	0.13	0.00	0.07	0.08	0.30	0.00
Ni (mg/l)	0.05 0.05 0.05	0.05 .	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	QN	60 0	0.04	20.0	0.03	00.0	0.03	00.0	00.0	0.03	0.06	0.09	0.08	0.12	0.13	0.10	0.18	0.00	0.00	0.03	0.03	0.03	0.04	0.00	80'0
Na (mg/l)	8 6 6 8	53	2 33	48	43	43 24	80	33	37	41	36	33	48	36	35	35	40	38	34	99	65	66	83	99	64	99	83	31	15	26	25	27	28	33	3
Mn (l/gm)	1.3 0.6 7.0	1.1	0.0	1.9	0.6	1.0 0.6	0.6	1.5	1.1	0.7	0.6	14.4	23.2	17.0	22.7	21.6	32.2	32.4	28.1	0.0	72.2	74.2	73.5	103.1	120.8	125.0	115.9	0.3	3.2	4.1	7.8	7.5	15.8	14.0	14.U
(I/ɓɯ)	110 120 120 120	<u>6</u>	110	150	130	110	130	200	110	110	110	165	386	296	377	383	560	591	521	260	610	577	617	779	819	1127	<u> 3</u> 33:	74	102	140	157	145	LC2	261	¥07
(l/ɓɯ) X	500 530 7	1 1 0	25	2.9	2.4	1.9	1.3	1.9	1.0	1.5	1,9	16.3	26.0	21.3	22.4	23.3	27.5	28.0	26.3	46.0	50.0	52.1	55.9	58.6	62.9	62.0	65.4	9.3	6.2	11.3	13.5	15.7	18.1	18.0 1 A D	0.0
Fe (mg/l)	36 7 6) ത (a (1	140	יד ו	0 0	4	11	20	9	£	146	172	164	234	240	441	426	476	512	943	982	942	1059	1371	15/4	1565	თ	108	161	241	201	463	413	714
Cu (mg/l)	0.01 0.07 0.04	0.11	0.13	0.10	0.02	0.01	0.06	0.19	0.14	0.18	0.08	0.32	0.33	0.27	0.02	0.03	0.03	0.40	0.51	0.92	1.10	1.36	0.04	0.02	0.02	0.40	0.27	0.07	0.16	0.23	0.05	0.02	0.03	0.30	0,4,0
CI CI (mg/l)	an an an	22	N N	ON -	2.0	D D	QN	QN	QN	9.4	QN	QN	ND	DN	0.0	0.0	ND	Q	QN	QN	34.9	QN	QN	0.0		N	QN	QN	QN	QN	QN	QN	0.0	ON R	20
Date Sampled	04/18/88 05/09/88 05/30/88 06/20/88	07/25/88	10/17/88	11/14/88	01/09/89	04/11/89	05/22/89	08/21/89	10/29/89	03/12/90	04/30/90	06/18/90	03/11/91	06/03/91	03/30/92	05/26/92	08/26/92	11/17/92	03/01/93	06/18/90	03/11/91	06/03/91	03/30/92	05/26/92	08/26/92	76// 1/11	03/01/93	06/18/90	03/11/91	06/03/91	03/30/92	05/26/92	76197180	11/17/92 03/01/02	ce/10/c0
Weil ID	5 5 5 5 5 5 6 6 6 6	5 G	2 2	Б.	£ 8	2 2	Б3	P3	Р3	P3	ЪЗ	P3A	P3A	P3A	P3A	P3A	P3A	P3A	P3A	P3B	P3B	P3B	P3B	P3B	P3B	135	P3B	P3C	7.0C						

APPENDIX C.—SUMMARY OF SEM ANALYSIS OF SAMPLES TAKEN AT BASE OF AND BELOW TAILINGS

1988 SAMPLES

Photomicrographs from SEM examination of polished sections of the 1988 and 1990 samples were taken. The actual photographs are not included in this RI but are available by contacting any of the authors. In this appendix, the SEM observations are described for each sample, including observations that were not recorded by photomicrograph.

Sample P-4-A (From well P4, 0 to 7.6 cm below tailings.)

Barium sulfate (the mineral barite) is a fairly common constituent of the fine-grained fraction of sample P-4-A. Numerous barite grains, 2 to 8 μ m in size, in a matrix rich in iron, aluminum, and silicon (perhaps an amorphous precipitate?) were observed. Elsewhere on this sample, rectangular gypsum crystals were found, as was a grain of iron-titanium oxide in a matrix of silica.

Sample P-4-B (From well P4, 7.6 to 22.9 cm below tailings.)

Framboidal spheroids composed of iron and sulfur were observed in sample P-4-B. Although the mineralogy of these spheroids has not been determined, they are assumed to be pyrite based on results of numerous other studies (e.g., Berner, 1970). The framboids range in diameter from about 6 to 20 μ m. Regardless of the total size of the framboidal spheroid, the individual spheres within the spheroid seem to be about 0.8 μ m in size.

Sample P-4-C (From well P4, 22.9 to 25.4 cm below tailings.)

In addition to pyrite framboids about 8 μ m in diameter, this sample contained a mottled mass of iron oxide. Also, various shell fragments (snails?) showed only calcium during EDS and are probably composed of calcium carbonate. A grain with titanium and silica and in a silica matrix probably represents sphene trapped in quartz.

Sample P-5-A (From well P5, 0 to 2.5 cm below tailings.)

This sample contained a relatively large (100 to 200 μ m) grain cluster of gypsum (calcium and sulfur on EDS). Barite grains in an iron-aluminum-silicon matrix were also observed.

Sample P-5-B (From well P5, 2.5 to 12.7 cm below tailings.)

Barite was observed in sample P-5-B, as well as a limited amount of framboidal pyrite particles about 8 μ m in diameter.

Sample P-5-C (From well P5, depth unknown.)

A grain of galena was found in quartz. Antimony and silver were detected by EDS on this grain, indicating the presence of a sulfosalt mineral. No pyrite framboids were found. Some gypsum, with a lead-rich core, was observed.

Sample P-6-A (From well P6, 0 to 10.1 cm below tailings.)

Pyrite framboids of about 8 μ m in diameter were found in this sample. One of the framboids has an oxidation rind in which the relative amount of sulfur is less than in the central portion. Because the rind is thinner, about 2 μ m, than the spatial resolution of the SEM for semiquantitative analysis, it seems probable that the rind is composed entirely of iron (iron oxide, or goethite). Also found in this sample were grains of barite and an irontitanium oxide (ilmenite?).

Sample P-6-B (From well P6, 10.1 to 22.9 cm below tailings.)

This sample contains a cluster of three pyrite framboids, each about 16 to 18 μ m in diameter, plus a number of dispersed, individual spherules, which may simply represent a larger framboid damaged during sample preparation.

1990 SAMPLES

Sample B2A-1 (From well B2A, base of tailings.)

This sample appears to represent the bottom of the tailings, just above the organic layer. Barite was quite abundant. Also detected were K-feldspar, quartz, and iron oxide (goethite?). No sulfide grains, algae, or diatoms were seen in this interval. Sample B2A-2 (From well B2A, 2.5 to 7.6 cm below tailings.)

Pyrite framboids from 2 to 6 μ m in diameter were seen in this interval at the top of the organic layer. Radiolarian debris was abundant.

Sample B2A-3 (From well B2A, 30.5 to 40.6 cm below tailings.)

Volcanic ash was abundant in this interval. Excessive charging of the sample during SEM examination precluded taking any informative photographs.

Sample P3A-1 (From well P3A, 2.5 to 7.6 cm below tailings.)

Some pyrite framboids about 6 μ m in diameter were observed along with abundant radiolarian debris and algal cysts (crysophytes).

Sample P3A-2 (From well P3A, 30.5 to 40.6 cm below tailings.)

Only a few pyrite framboids (about 4 μ m in diameter) were found along with abundant algal cysts and radiolarian debris.

Sample P3A-3 (From well P3A, 48.3 to 58.4 cm below tailings.)

No pyrite framboids were found in this sample, which apparently consists largely of devitrified volcanic glass. An EDS spectrum of the material showed silicon, aluminum, potassium, and calcium, some of the major elements in dacitic-to-rhyolitic glass from volcanic ashfalls typical of the region. Sample P3C-1 (From well P3C, base of tailings.)

This sample presumably contained oxidized tailings from above the organic layer. Fine-grained barite was very abundant, along with iron oxides. No sulfide minerals were found. No SEM photomicrographs were taken because of excessive charge buildup on the sample.

Sample P3C-2 (From well P3C, 0 to 7.6 cm below tailings.)

At the top of the organic-rich layer, abundant pyrite framboids, 10 to 20 μ m in diameter, were observed. Some algal cysts were also found.

Sample P3C-3 (From well P3C, 7.6 to 15.2 cm below tailings.)

This sample had abundant algal cysts (chrysomonads, which are the resting state of algae), possible volcanic glass shards, well-formed pyrite framboids, and abundant diatom and radiolarian fossils.

Sample P3C-4 (From well P3C, 60.9 to 76.2 cm below tailings.)

A tan-to-brown clay-rich layer looked to be composed of partially devitrified volcanic glass. An EDS spectrum showed abundant silica, with detectable aluminum, potassium, calcium, and iron, as would be expected from rhyolitic to rhyodacitic ashfalls.

Sample P3C-5 (From well P3C, 76.2 to 94 cm below tailings.)

Volcanic glass shards and algal cysts were observed by SEM, in this brown-to-tan layer, but no pyrite framboids. Macroscopically, some green material was present, perhaps a live colony of moss or algae.

APPENDIX D.—RESULTS OF CHEMICAL ANALYSES OF SOLID SAMPLES COLLECTED AT BASE AND BELOW TAILINGS

(Analyses conducted by IGAl, Inc., Cheney, WA)

IGAL, Inc. 111 College Ave. Cheney, WA 99004 July 17, 1991

Si (ppm)

Sample No.	I	II	III	IV	V
P2A18	57	61	392	323	560
B2A20	5	103	405	278	365
P2A20	15	150	495	580	1210
P2A22	78	395	680	435	805
P3A19	125	520	428	1520	835
P3A22	62	265	860	605	1030
P3C24	15	75	218	125	362

Al (ppm)

Sample No.	I	II	III	IV	V
P2A18	35	232	733	365	2450
B2A20	15	270	1065	220	1075
P2A20	3	45	260	535	1760
P2A22	<1	95	518	420	2350
P3A19	<1	36	180	1570	575
P3A22	<1	105	522	920	6320
P3C24	<1	12	50	5	80

Fe	(ppm)	
----	-------	--

!

٩,

۰.

,

Sample No.	I	II	III	IV	v
P2A18	50	428	1910	282	8450
B2A20	15	370	1368	150	6420
P2A20	7	5570	9710	4905	6750
P2A22	3	2750	2015	860	4675
P3A19	5	35	210	3300	1960
P3A22	8	1080	1075	1510	4225
P3C24	3	4750	1335	135	450

Mn (ppm)

Sample No.	I	II	III	IV	V
P2A18	12		8	<1	30
B2A20	15	6	18	1	8
P2A20	120	210	105	25	32
P2A22	72	80	<1	45	16
P3A19	60	122	30	60	3
P3A22	5	42	8	2	<1
P3C24	5	225	35	<1	<1

Mg (ppm)

Sample No.	I	II	III	IV	V
P2A18	201	16	62	35	1890
B2A20	162	20	33	21	542
P2A20	1980	632	225	120	1250
P2A22	1285	250	95	58	1025
P3A19	860	1750	232	73	175
P3A22	1015	1460	260	105	520
P3C24	180	3350	220	35	65

.

Ca	(ppm)
----	---	-----	---

Sample No.	I	II	III	IV	v
P2A18	506	37	530	83	145
B2A20	490	110	492	70	67
P2A20	14500	29450	5525	1610	1040
P2A22	12250	8320	1915	5018	1850
P3A19	16780	150850	27420	805	2885
P3A22	19660	119950	16935	3522	2615
P3C24	8840	324300	53230	42	1730

Cu (ppm)

.

.

Sample No.	I	II	III	IV	V
P2A18	10	52	.10	18	405
B2A20		40	5	7	170
P2A20	1	4	1	3	48
P2A22	<1	3	1	6	45
P3A19	<1	4	1	4	34
P3A22	<1	4	1	6	46
P3C24	<1.	3	1	2	8

Pb (ppm)

Sample No.	I	II	III	IV	v
P2A18	1	18	45	4	35
B2A20	<1	20	38	3	27
P2A20	<1	<1	<1	<1	5
P2A22	<1	<1	<1	<1	4
P3A19	<1	<1	<1	<1	2
P3A22	<1	<1	<1	<1	<1
P3C24	<1	<1	<1	<1	<1

I Exhchangable

II Bond to carbonates

III Bond to iron and manganese oxides

- IV Bond to organic matter
- V Bond to sulfides

Page 3

82

.